Some notes on U-Statistics

Ahnaf Rafi

August 30, 2025

Contents

1	Definitions of U-Statistics and V-Statistics	2
2	First order sum-space projection of U-statistics	3
3	\mathscr{L}_2 distance between a U-statistic and its first order sum-space projection	
	under permutation symmetry	5
	3.1 Proof of Theorem 3.1 in the case of $m=2$	7
	3.2 Proof of Theorem 3.1 in the case of $m > 2$	8
4	Asymptotic comparison of U- and V-statistics	11
A	Preliminaries on projections	14
	A.1 Existence of projections onto closed and convex subsets	14
	A.2 Projection onto linear subspaces and orthogonality	16
	A.3 Second-moment distance between a random variable and its projection	18
	A.4 Projection onto sum spaces	19
В	Exercises in counting	20

1 Definitions of U-Statistics and V-Statistics

Throughout, all randomness is defined on a probability space $(\Omega, \mathcal{F}, \Pr)$ with $E[\cdot]$ and $Var[\cdot]$ denoting expectation and variance respectively against \Pr . Furthermore, $\{Z_i\}_{i=1}^n$ is a sample of i.i.d. random vectors, with F denoting their common distribution. Finally $\|\cdot\|$ denotes the Euclidean norm for vectors.

For $n, m \in \mathbb{N}$ with $n \geq m$, define

$$\mathbb{N}_{n} = \{1, \dots, n\} = \{j \in \mathbb{N} : j \leq n\},$$

$$\operatorname{Inj}_{n,m} = \{i \in \mathbb{N}_{n}^{m} : [j, k \in \mathbb{N}_{m}, j \neq k] \implies i(j) \neq i(k)\},$$

$$\operatorname{NonInj}_{n,m} = \mathbb{N}_{n}^{m} \setminus \operatorname{Inj}_{n,m} = \{i \in \mathbb{N}_{n}^{m} : \exists j, k \in \mathbb{N}_{m}, j \neq k \text{ such that } i(j) = i(k)\}.$$

$$(1.1)$$

In (1.1), Inj stands for "injective" (i.e. one-to-one) and NonInj stands for "non-injective". The cardinality of $\text{Inj}_{n,m}$ is

$$\gamma_{n,m} := \left| \text{Inj}_{n,m} \right| = \prod_{k=0}^{m-1} (n-k).$$
(1.2)

For a function $\eta(x_1,\ldots,x_m)$, the associated U- and V-statistics are respectively:

$$U_n(\eta) = \frac{1}{\gamma_{n,m}} \sum_{i \in \text{Inj}_{n,m}} \eta \left(Z_{i(1)}, \dots, Z_{i(m)} \right),$$

$$V_n(\eta) = \frac{1}{n^m} \sum_{i \in \mathbb{N}^m} \eta \left(Z_{i(1)}, \dots, Z_{i(m)} \right).$$

$$(1.3)$$

The function η is called a *kernel* and the number of arguments $m := m_{\eta}$, is called the *order* of the kernel. Though the order m is dependent on η , we suppress this dependence for brevity. In addition, we hold m fixed throughout and impose the restriction $n \ge m$.

The kernel η is permutation symmetric iff

for any permutation
$$\{i(1), \ldots, i(m)\}$$
 of $\{1, \ldots, m\}$,
$$\eta\left(z_{i(1)}, \ldots, z_{i(m)}\right) = \eta\left(z_1, \ldots, z_m\right).$$

When η is permutation symmetric, the corresponding U-statistic in (1.3) becomes

$$U_n(\eta) = \binom{n}{m}^{-1} \sum_{i \in \operatorname{Inc}_{n,m}} \eta \left(Z_{i(1)}, \dots, Z_{i(m)} \right),$$

where $Inc_{n,m} \subseteq Inj_{n,m}$ is the collection of strictly increasing index vectors:

$$Inc_{n,m} = \{ (i(1), \dots, i(m)) \in \mathbb{N}_n^m : [j, l \in \mathbb{N}_m, j < l] \implies i(j) < i(l) \}.$$
 (1.4)

2 First order sum-space projection of U-statistics

We now consider the projection of the U-statistic $U_n(\eta, F)$ onto the sum-space for the n i.i.d. random variables Z_1, \ldots, Z_n drawn from F. Denote this sum space by

$$S_n := S_n(F) := \left\{ \sum_{j=1}^n g_j(Z_j) : \forall j \in \mathbb{N}_n, Z_j \sim F, g_j \text{ measurable}, \int g_j^2 dF < \infty \right\}.$$
 (2.1)

Henceforth, let $m \geq 2$. Denote

$$\Pi_{0}(\eta) := \Pi_{0}(\eta, F) := E_{F^{m}} \left[\eta \left(Z_{1}, \dots, Z_{m} \right) \right],$$

$$\forall c \in \mathbb{N}_{m-1}, \quad \Pi_{c} \left(z_{1}, \dots, z_{c}; \eta \right) := \Pi_{c} \left(z_{1}, \dots, z_{c}; \eta, F \right)$$

$$:= E_{F^{m}} \left[\eta \left(Z_{1}, \dots, Z_{m} \right) | Z_{1} = z_{1}, \dots, Z_{c} = z_{c} \right]$$

$$= \int \eta \left(z_{1}, \dots, z_{c}, z_{c+1}, \dots, z_{m} \right) F^{m-c} \left(dz_{c+1}, \dots, dz_{m} \right),$$
(2.3)

and
$$\widehat{U}_n(\eta) := \widehat{U}_n(\eta, F)$$

$$:= \Pi_0(\eta, F) + \frac{m}{n} \sum_{j=1}^n \left\{ \Pi_1(Z_j; \eta, F) - \Pi_0(\eta, F) \right\}$$

$$= \Pi_0(\eta) + \frac{m}{n} \sum_{j=1}^n \left\{ \Pi_1(Z_j; \eta) - \Pi_0(\eta) \right\}.$$
(2.4)

In all of the above expressions, the notation expresses the fact that though the functions Π_c and \widehat{U}_n all depend on both η and F, we shall suppress dependence on F. We follow this scheme throughout, so that $E \equiv E_{F^n}$ throughout.

Lemma 2.1. $\widehat{U}_n(\eta)$ in (2.4) is the projection of $U_n(\eta)$ onto the sum space S_n in (2.1).

Proof of Lemma 2.1. We apply Theorem A.4. Take any $i \in \text{Inj}_{n,m}$. Then, for any $j = 1, \ldots, n$,

$$\mathrm{E}\left[\eta\left(Z_{i(1)},\ldots,Z_{i(m)}\right)\big|Z_{j}=z\right]=\begin{cases} \Pi_{1}(z;\eta) & \text{if } j\in\left\{i(1),\ldots,i(m)\right\},\\ \Pi_{0}(\eta) & \text{otherwise.} \end{cases}$$

For fixed $j \in \{1, ..., n\}$, consider averaging over $i \in \text{Inj}_{n,m}$. The first case happens $m \cdot \gamma_{n-1,m-1}$ times. To see this, given an 'empty' m-vector i, there are m possible places to place j and $\gamma_{n-1,m-1}$ ways to select the remaining elements of i. Hence

$$E\left[U_n(\eta)|Z_j\right] = \frac{1}{\gamma_{n,m}} \sum_{i \in \text{Inj}_{n,m}} E\left[\eta\left(Z_{i(1)}, \dots, Z_{i(m)}\right) \middle| Z_j\right]$$
$$= m \frac{\gamma_{n-1,m-1}}{\gamma_{n,m}} \Pi_1\left(Z_j; \eta\right) + \left(1 - m \frac{\gamma_{n-1,m-1}}{\gamma_{n,m}}\right) \Pi_0(\eta).$$

Since $\gamma_{n-1,m-1}/\gamma_{n,m} = 1/n$,

$$E[U_n(\eta)|Z_j] = \frac{m}{n} \Pi_1(Z_j; \eta) + \left(1 - \frac{m}{n}\right) \Pi_0(\eta).$$

Apply Theorem A.4; the projection of $U_n(\eta)$ is therefore

$$E[U_{n}(\eta)] + \sum_{j=1}^{n} (E[U_{n}(\eta)|Z_{j}] - E[U_{n}(\eta)])$$

$$= \Pi_{0}(\eta) + \sum_{j=1}^{n} \left(\frac{m}{n} \Pi_{1}(Z_{j}; \eta) + \left(1 - \frac{m}{n}\right) \Pi_{0}(\eta) - \Pi_{0}(\eta)\right)$$

$$= \Pi_{0}(\eta) + \frac{m}{n} \sum_{j=1}^{n} \{\Pi_{1}(Z_{j}; \eta) - \Pi_{0}(\eta)\}$$

$$= \widehat{U}_{n}(\eta),$$

as desired. \Box

3 \mathscr{L}_2 distance between a U-statistic and its first order sum-space projection under permutation symmetry

In this section, we assume that the kernel η is permutation symmetric. Hence, the relevant set of indices to work with is $\operatorname{Inc}_{n,m}$ in (1.4). Consider the (squared) \mathscr{L}_2 distance between a U-statistic and its projection, $\widehat{U}_n(\eta, F)$, onto the first order sum space \mathcal{S}_n defined in (2.1):

$$\rho_n(\eta) := \rho_n(\eta, F) := \mathcal{E}_{F^n} \left[\left(U_n(\eta) - \widehat{U}_n(\eta, F) \right)^2 \right]. \tag{3.1}$$

We can readily apply Theorem A.3 since S_n contains the constant (non-stochastic) random variables. Hence, (3.1) becomes

$$\rho_n(\eta) = \operatorname{Var}\left[U_n(\eta)\right] - \operatorname{Var}\left[\widehat{U}_n(\eta)\right]. \tag{3.2}$$

The variance of $\widehat{U}_n(\eta)$ is easily characterized:

$$\operatorname{Var}\left[\widehat{U}_{n}(\eta)\right] = \frac{m^{2}}{n} \operatorname{Var}\left[\Pi_{1}(Z;\eta)\right]. \tag{3.3}$$

Furthermore, we can always write

$$\operatorname{Var}\left[U_{n}(\eta)\right] = \binom{n}{m}^{-2} \sum_{i \in \operatorname{Inc}_{n,m}} \sum_{i' \in \operatorname{Inc}_{n,m}} \operatorname{Cov}\left(\eta\left(Z_{i(1)}, \dots, Z_{i(m)},\right), \eta\left(Z_{i'(1)}, \dots, Z_{i'(m)}\right)\right). \tag{3.4}$$

We now introduce a notation scheme that will help us to simplify (3.4) and will allow us to provide a unified treatment of (3.3) and (3.4) under i.i.d. Z_1, \ldots, Z_n . For $0 \le c \le m$, denote

$$\zeta_c(\eta) := \zeta_c(\eta, F) := \operatorname{Var}_{F^c} \left[\Pi_c \left(Z_1, \dots, Z_c; \eta, F \right) \right]
= \operatorname{Var}_{F^c} \left[\operatorname{E}_{F^m} \left[\eta \left(Z_1, \dots, Z_m \right) | Z_1, \dots, Z_c \right] \right].$$
(3.5)

It can be shown that $\zeta_c(\eta)$ has the following alternative representation:

$$\zeta_c(\eta) = \text{Cov}\left(\eta\left(Z_1, \dots, Z_c, Z_{1,c+1}, \dots, Z_{1,m}\right), \eta\left(Z_1, \dots, Z_c, Z_{2,c+1}, \dots, Z_{2,m}\right)\right),\tag{3.6}$$

where $\{Z_j\}_{j=1}^n$, $\{Z_{1,j}\}_{j=1}^n$ and $\{Z_{2,j}\}_{j=1}^n$ are all mutually independent random vectors all with distribution F. That is, $\zeta_c(\eta)$ is the covariance of $\eta\left(Z_{i(1)},\ldots,Z_{i(m)}\right)$ and $\eta\left(Z_{i'(1)},\ldots,Z_{i'(m)}\right)$ when i and i' are strictly increasing and have exactly c elements in common. Of course for $c=0, \zeta_0(\eta)=0$ by independence of the Z_j 's.

Revisiting (3.3) using (3.5),

$$\operatorname{Var}\left[\widehat{U}_n(\eta)\right] = \frac{m^2}{n} \zeta_1(\eta). \tag{3.7}$$

For (3.4), we can instead use (3.6). Since there are $\binom{n}{m}\binom{m}{c}\binom{m-m}{m-c}$ pairs $i, i' \in \text{Inc}_{n,m}$ with exactly c elements in common (see Theorem B.1 for a formal statement and proof),

$$\operatorname{Var}\left[U_{n}(\eta)\right] = \binom{n}{m}^{-2} \sum_{c=0}^{m} \binom{n}{m} \binom{m}{c} \binom{n-m}{m-c} \zeta_{c}(\eta)$$
$$= \binom{n}{m}^{-2} \sum_{c=1}^{m} \binom{n}{m} \binom{m}{c} \binom{n-m}{m-c} \zeta_{c}(\eta) \qquad [\text{by } \zeta_{0}(\eta) = 0],$$

and so,

$$\operatorname{Var}\left[U_n(\eta)\right] = \sum_{c=1}^m \binom{m}{c} \binom{n}{m}^{-1} \binom{n-m}{m-c} \zeta_c(\eta). \tag{3.8}$$

Combining (3.2), (3.7) and (3.8),

$$\rho_n(\eta) = \sum_{c=1}^m \binom{m}{c} \binom{n}{m}^{-1} \binom{n-m}{m-c} \zeta_c(\eta) - \frac{m^2}{n} \zeta_1(\eta). \tag{3.9}$$

Theorem 3.1. For $m \in \mathbb{N} \setminus \{1\}$, let η be a m^{th} order kernel that is permutation symmetric. Furthermore, let F be a probability measure such that $\eta \in \mathcal{L}_2(F^m)$. Let $\rho_n(\eta, F)$ be as defined in (3.1). In the case of m = 2, we have the equality

$$\rho_n(\eta, F) = \frac{2}{n(n-1)} \left(\mathbb{E}_F \left[\text{Var}_{F^2} \left[\eta \left(Z_1, Z_2 \right) | Z_1 \right] \right] - \text{Var}_F \left[\mathbb{E}_{F^2} \left[\eta \left(Z_1, Z_2 \right) | Z_1 \right] \right] \right). \tag{3.10}$$

More generally, for any $m \geq 2$, we can bound $\rho_n(\eta, F)$ by

$$\rho_n(\eta, F) \le \frac{m^2 (m-1)^2 \left(1 + \frac{m-1}{n-m+1}\right)}{n^2} \zeta_1(\eta, F) + \sum_{c=2}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} \left(1 + \delta_{n,m,c}\right) \zeta_c(\eta, F),$$
(3.11)

where for each $c \in \{2, ..., m\}$, the quantities $\delta_{n,m,c}$ are do not depend on η , F or the dimension of Z_i (except possibly through n and m) and satisfy $\lim_{n\to\infty} \delta_{n,m,c} = 0$.

3.1 Proof of Theorem 3.1 in the case of m=2

For m = 2, (3.9) becomes

$$\rho_n(\eta) = \frac{4}{n} \left(\frac{(n-2)!}{(n-1)!} \cdot \frac{(n-2)!}{(n-3)!} - 1 \right) \zeta_1(\eta) + \binom{n}{2}^{-1} \zeta_2(\eta)$$
$$= \frac{4}{n} \left(\frac{n-2}{n-1} - 1 \right) \zeta_1(\eta) + \frac{2}{n(n-1)} \zeta_2(\eta),$$

and so

$$\rho_n(\eta) = \frac{2}{n(n-1)} \left(\zeta_2(\eta) - 2\zeta_1(\eta) \right). \tag{3.12}$$

Since m = 2, $\Pi_2(\cdot; \eta) = \eta(\cdot)$. Using (3.5),

$$\begin{split} \zeta_2(\eta) &= \operatorname{Var}\left[\eta\left(Z_1,Z_2\right)\right] \\ &= \operatorname{Var}\left[\operatorname{E}\left[\eta\left(Z_1,Z_2\right)|Z_1\right]\right] + \operatorname{E}\left[\operatorname{Var}\left[\eta\left(Z_1,Z_2\right)|Z_1\right]\right] \\ &= \operatorname{Var}\left[\Pi_1\left(Z_1;\eta\right)\right] + \operatorname{E}\left[\operatorname{Var}\left[\eta\left(Z_1,Z_2\right)|Z_1\right]\right] \\ &= \zeta_1(\eta) + \operatorname{E}\left[\operatorname{Var}\left[\eta\left(Z_1,Z_2\right)|Z_1\right]\right]. \end{split}$$

Then, from (3.12), using the fact that $\zeta_1(\eta) = \text{Var}\left[\mathbb{E}\left[\eta\left(Z_1,Z_2\right)|Z_1\right]\right]$ (from (3.5)),

$$\rho_n(\eta) = \frac{2}{n(n-1)} \left(\mathbb{E} \left[\text{Var} \left[\eta \left(Z_1, Z_2 \right) | Z_1 \right] \right] - \text{Var} \left[\mathbb{E} \left[\eta \left(Z_1, Z_2 \right) | Z_1 \right] \right] \right),$$

which is exactly (3.10).

3.2 Proof of Theorem 3.1 in the case of m > 2

For m > 2, recall that in (3.9),

$$\rho_n(\eta) = \sum_{c=1}^m \binom{m}{c} \binom{n}{m}^{-1} \binom{n-m}{m-c} \zeta_c(\eta) - \frac{m^2}{n} \zeta_1(\eta).$$

For c = m,

$$\binom{n}{m}^{-1} \binom{n-m}{0} = \frac{(n-m)!m!}{n!} = \frac{m!}{\gamma_{n,m}}$$

Thus,

for
$$c = m$$
, $\binom{n}{m}^{-1} \binom{n-m}{m-c} = \frac{m!}{(m-c)!} \frac{1}{\gamma_{n,c}} (1 + \delta_{n,m,c})$, where $\delta_{n,m,c} = 0$, for each n .

Now let $c \in \{2, \dots, m-1\}$. Then,

$$\binom{n}{m}^{-1} \binom{n-m}{m-c} = \frac{(n-m)!m!}{n!} \cdot \frac{(n-m)!}{(n-2m+c)!(m-c)!}$$

$$= \frac{m!}{(m-c)!} \cdot \frac{(n-m)!}{n!} \cdot \frac{(n-m)!}{(n-2m+c)!}$$

$$= \frac{m!}{(m-c)!} \cdot \frac{(n-m)\cdots(n-2m+c+1)}{n\cdots(n-m+1)}.$$

The numerator has m-c terms, whereas the denominator has m terms. Hence for fixed m we can factor out $1/\gamma_{n,c}$ to get

$$\binom{n}{m}^{-1} \binom{n-m}{m-c} = \frac{m!}{(m-c)!} \cdot \frac{(n-m)\cdots(n-2m+c+1)}{n(n-1)\cdots(n-m+1)}$$

$$= \frac{m!}{(m-c)!} \cdot \frac{1}{n\cdots(n-c+1)} \cdot \frac{(n-m)\cdots(n-2m+c+1)}{(n-c)\cdots(n-m+1)}$$

$$= \frac{m!}{(m-c)!} \cdot \frac{1}{\gamma_{n,c}} \cdot \frac{(n-m)\cdots(n-2m+c+1)}{(n-c)\cdots(n-m+1)} .$$

Factorising the ratio in the end further,

$$\binom{n}{m}^{-1} \binom{n-m}{m-c} = \frac{m!}{(m-c)!} \cdot \frac{1}{\gamma_{n,c}} \cdot \prod_{l=0}^{m-c-1} \left(1 - \frac{m-c}{n-c-l}\right).$$

Therefore, set

$$\delta_{n,m,c} = \left[\prod_{l=0}^{m-c-1} \left(1 - \frac{m-c}{n-c-l} \right) \right] - 1.$$
 (3.13)

Then,

$$\binom{n}{m}^{-1} \binom{n-m}{m-c} = \frac{m!}{(m-c)!} \frac{1}{\gamma_{n,c}} \left(1 + \delta_{n,m,c}\right),$$
where $\lim_{n \to \infty} \delta_{n,m,c} = 0$, for each $c \le m$.

Therefore, applying the above expression to (3.9)

$$\rho_n(\eta) = \sum_{c=1}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} \left(1 + \delta_{n,m,c}\right) \zeta_c(\eta) - \frac{m^2}{n} \zeta_1(\eta)$$

$$= \frac{m^2}{n} \delta_{n,m,1} \zeta_1(\eta) + \sum_{c=2}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} \left(1 + \delta_{n,m,c}\right) \zeta_c(\eta). \tag{3.14}$$

For fixed η , visual inspection of (3.14), first suggests that the term corresponding to c=1 will exhibit the slowest tendency towards zero, unless $\delta_{n,m,1} = O(1/n)$. We can show that $\delta_{n,m,1} = O(1/n)$ is in fact true. To that end, from (3.13),

$$\delta_{n,m,1} = \left(1 - \frac{m-1}{n-1}\right) \cdots \left(1 - \frac{m-1}{n-m+1}\right) - 1.$$

By Billingsley (1995, Lemma 1, p. 358), given any $l \in \mathbb{N}$ and $z_{1,1}, z_{2,1}, \dots, z_{1,l}, z_{2,l} \in \mathbb{C}$ with $|z_{j,k}| \leq 1$,

$$|z_{1,1}\cdots z_{1,l}-z_{2,1}\cdots z_{2,l}| \leq \sum_{k=1}^{l} |z_{1,k}-z_{2,k}|.$$

Applying this with l = m-1, $z_{1,j} = 1 - ((m-1)/(n-j))$ and $z_{2,j} = 1$ for every j = 1, ..., m-1,

$$|\delta_{n,m,1}| \le \sum_{k=1}^{m-1} \frac{m-1}{n-k} \le (m-1)^2 \left(1 + \frac{m-1}{n-m+1}\right) \cdot \frac{1}{n}.$$
 (3.15)

Revisiting (3.14),

$$\rho_n(\eta) = \frac{m^2}{n} \delta_{n,m,1} \zeta_1(\eta) + \sum_{c=2}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} (1 + \delta_{n,m,c}) \zeta_c(\eta)$$

$$\leq \frac{m^2}{n} \left| \delta_{n,m,1} \right| \zeta_1(\eta) + \sum_{c=2}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} \left(1 + \delta_{n,m,c} \right) \zeta_c(\eta),$$

so that

$$\rho_n(\eta) \le \frac{m^2(m-1)^2 \cdot \left(1 + \frac{m-1}{n-m+1}\right)}{n^2} \zeta_1(\eta) + \sum_{c=2}^m \frac{1}{\gamma_{n,c}} \cdot \frac{(m!)^2}{((m-c)!)^2 c!} (1 + \delta_{n,m,c}) \zeta_c(\eta),$$

which is exactly (3.11).

4 Asymptotic comparison of U- and V-statistics

Theorem 4.1. If $q \in [1, \infty)$ and $\max_{i \in \mathbb{N}_n^m} \mathbb{E}\left[\left\|\eta\left(Z_{i(1)}, \dots, Z_{i(m)}\right)\right\|^q\right] < \infty$,

$$E[\|U_n(\eta) - V_n(\eta)\|^q]^{\frac{1}{q}} \le \frac{m(m-1)}{n} \max_{i \in \mathbb{N}_n^m} E[\|\eta(Z_{i(1)}, \dots, Z_{i(m)})\|^q]^{\frac{1}{q}}.$$
 (4.1)

Proof of Theorem 4.1. Apply Lemma 4.1:

$$E[\|U_n(\eta) - V_n(\eta)\|^q]^{\frac{1}{q}} \le \frac{2(n^m - \gamma_{n,m})}{n^m} \max_{i \in \mathbb{N}_n^m} E[\|\eta(Z_{i(1)}, \dots, Z_{i(m)})\|^q]^{\frac{1}{q}}.$$

By Lemma 4.2,
$$n^m - \gamma_{n,m} = (m(m-1)/2)n^{m-1}$$
 so that $(2(n^m - \gamma_{n,m}))/n^m = (m(m-1))/n$.
Hence (4.1) follows.

Lemma 4.1. Let \mathcal{I} be a non-empty finite set and $\{a_{\iota} : \iota \in \mathcal{I}\}$ be a subset of a normed space with norm $\|\cdot\|$. Let $\mathcal{I}_0 \subseteq \mathcal{I}$ be a strict subset of \mathcal{I} , i.e. $|\mathcal{I} \setminus \mathcal{I}_0| \geq 1$. Define

$$V = \frac{1}{|\mathcal{I}|} \sum_{\iota \in \mathcal{I}} a_{\iota}, \qquad U = \frac{1}{|\mathcal{I}_0|} \sum_{\iota \in \mathcal{I}_0} a_{\iota}, \qquad W = \frac{1}{|\mathcal{I}| - |\mathcal{I}_0|} \sum_{\iota \in \mathcal{I} \setminus \mathcal{I}_0} a_{\iota}. \tag{4.2}$$

Then, the following hold

$$V - U = \frac{|\mathcal{I}| - |\mathcal{I}_0|}{|\mathcal{I}|} (W - U), \tag{4.3}$$

$$||V - U|| \le 2 \frac{|\mathcal{I}| - |\mathcal{I}_0|}{|\mathcal{I}|} \max_{\iota \in \mathcal{I}} ||a_{\iota}||.$$
 (4.4)

Proof of Lemma 4.1. From (4.2), $|\mathcal{I}|V = \sum_{\iota \in \mathcal{I}_0} a_{\iota} + \sum_{\iota \in \mathcal{I} \setminus \mathcal{I}_0} a_{\iota} = |\mathcal{I}_0|U + (|\mathcal{I}| - |\mathcal{I}_0|)W$. Subtract $|\mathcal{I}|U$ from both sides, so that $|\mathcal{I}|(V - U) = (|\mathcal{I}| - |\mathcal{I}_0|)(W - U)$. Division by $|\mathcal{I}|$ establishes (4.3). For (4.4), by (4.3) and the triangle inequality,

$$||U - V|| = \frac{|\mathcal{I}| - |\mathcal{I}_0|}{|\mathcal{I}|} ||U - W|| \le \frac{|\mathcal{I}| - |\mathcal{I}_0|}{|\mathcal{I}|} (||U|| + ||W||)$$
$$\le 2 \frac{|\mathcal{I}| - |\mathcal{I}_0|}{|\mathcal{I}|} \max\{||U||, ||W||\}.$$

Since U and W are arithmetic averages over subsets of \mathcal{I} , we get $\max\{\|U\|, \|W\|\} \le \max_{\iota \in \mathcal{I}} \|a_{\iota}\|$ from repeated applications of the triangle inequality. This establishes (4.4).

Lemma 4.2. For $n, m \in \mathbb{N}$, with $n \geq m$, with $\gamma_{n,m}$ as in (1.2),

$$n^{m} - \gamma_{n,m} = \frac{m(m-1)}{2} n^{m-1}.$$
(4.5)

Proof of Lemma 4.2. For m=1, (4.5) follows from $\gamma_{n,1}=n$ by definition in (1.2). For m=2, by definition in (1.2), $\gamma_{n,2}=n(n-1)$. Thus

$$n^2 - \gamma_{n,2} = n^2 - n(n-1) = n,$$

so that (4.5) follows for m=2.

Now we verify (4.5) for m > 2. Note that

$$n^m - \gamma_{n,m} = |\text{NonInj}_{n,m}|,$$

where as in (1.1),

$$\mathrm{NonInj}_{n,m} = \left\{ i \in \mathbb{N}_n^m : \exists j,k \in \mathbb{N}_m, j \neq k \text{ such that } i(j) = i(k) \right\}.$$

Now consider the task of picking an element from NonInj_{n,m}. Recall that we are considering the cases m > 2. We can exhaust NonInj_{n,m} by using the following steps:

- 1. Pick two indices $j, k \in \mathbb{N}_m$ such that j < k;
- 2. Select $i(j) \in \mathbb{N}_n$ and set i(k) = i(j);
- 3. Pick the restriction $\{i(l): l \in \mathbb{N}_m \setminus \{j, k\}\} \in \mathbb{N}_n^{m-2}$ arbitrarily.

There are m(m-1)/2 ways to complete step 1. For each instance of step 1, there are n ways to complete step 2. Finally, for each instance of steps 1 and 2, there are n^{m-2} ways to complete step 3. Therefore,

$$n - \gamma_{n,m} = \left| \text{NonInj}_{n,m} \right| = \frac{m(m-1)}{2} \cdot n^{m-1}.$$

References

Billingsley, Patrick. 1995. *Probability and Measure*. Wiley Series in Probability and Statistics. Wiley.

A Preliminaries on projections

Denote the set of random variables that are square-integrable against Pr by

$$\mathscr{L}_2 \equiv \mathscr{L}_2(\Pr) = \left\{ X : \operatorname{E}\left[|X|^2\right] = \int |X|^2 d\operatorname{Pr} < \infty \right\}. \tag{A.1}$$

It is well known that \mathscr{L}_2 is a Hilbert space under the inner product $\langle X, Y \rangle = \mathrm{E}[X \cdot Y]$. That is, the inner product space $(\mathscr{L}_2, \langle \cdot, \cdot \rangle)$ is a complete metric space under the induced normed metric:

$$\rho_2(X,Y)^2 := \|X - Y\|_2^2 := \langle X - Y, X - Y \rangle = \mathbb{E}\left[|X - Y|^2\right] \quad \forall \ X, Y \in \mathcal{L}_2. \tag{A.2}$$

Let $S \subseteq \mathcal{L}_2(\Pr)$ and $T \in \mathcal{L}_2$. $T_* \in S$ is a projection of T onto S if and only if

$$T_* \in \mathcal{S}$$
 and $\mathrm{E}\left[(T - T_*)^2 \right] \le \mathrm{E}\left[(T - S)^2 \right] \quad \forall S \in \mathcal{S}.$ (A.3)

A.1 Existence of projections onto closed and convex subsets

Theorem A.1 shows that a projection on $\mathcal{S} \subset \mathscr{L}_2$ exists whenever \mathcal{S} is closed and convex.

Theorem A.1. Let $T \in \mathcal{L}_2$ and let $S \subseteq \mathcal{L}_2$ be closed and convex. Then there exists T_* satisfying (A.3). Furthermore, T_* is almost surely unique, i.e. if T_{**} also satisfies (A.3), then $\Pr\{T_* \neq T_{**}\} = 0$.

Proof of Theorem A.1. Let

$$d_* := \inf_{S \in \mathcal{S}} \mathrm{E}\left[(S - T)^2 \right].$$

Then for each $n \in \mathbb{N}$, there necessarily exists $S_n \in \mathcal{S}$ such that

$$d_* \le \mathrm{E}\left[(S_n - T)^2 \right] \le d_* + \frac{1}{n}.$$

Furthermore for any $n, m \in \mathbb{N}$,

$$E[(S_n - S_m)^2] = E[(S_n - T)^2] + E[(S_m - T)^2] - 2E[(S_n - T)(S_m - T)],$$

$$4E\left[\left(\frac{S_n + S_m}{2} - T\right)^2\right] = E[(S_n - T)^2] + E[(S_m - T)^2] + 2E[(S_n - T)(S_m - T)].$$

This implies

$$E[(S_n - S_m)^2] = 2E[(S_n - T)^2] + 2E[(S_m - T)^2] - 4E\left[\left(\frac{S_n + S_m}{2} - T\right)^2\right].$$

Since S is convex, $\frac{1}{2}(S_n + S_m) \in S$ and so, $E\left[\left\{\frac{1}{2}(S_n + S_m) - T\right\}^2\right] \geq d_*$. Using the upper bounds in the definition of S_n and S_m , and the lower bound now established,

$$E[(S_n - S_m)^2] \le 2(d_* + \frac{1}{n}) + 2(d_* + \frac{1}{m}) - 4d_* = 2(\frac{1}{n} + \frac{1}{m}).$$

Hence, $\{S_n\}$ is Cauchy in \mathcal{S} . Since \mathscr{L}_2 is complete and \mathcal{S} is a closed subset of \mathscr{L}_2 , \mathcal{S} is also necessarily complete. Thus, there is a $T_* \in \mathcal{S}$ such that $\lim_{n \to \infty} \mathbb{E}\left[(S_n - T_*)^2\right] = 0$. Then,

$$d_* \le \mathrm{E}\left[(T_* - T)^2 \right] = \mathrm{E}\left[(S_n - T)^2 \right] + \mathrm{E}\left[(T_* - S_n)^2 \right] + 2\mathrm{E}\left[(S_n - T) \cdot (T_* - S_n) \right]$$

$$\le \mathrm{E}\left[(S_n - T)^2 \right] + \mathrm{E}\left[(T_* - S_n)^2 \right] + 2\mathrm{E}\left[(S_n - T)^2 \right]^{\frac{1}{2}} \mathrm{E}\left[(T_* - S_n)^2 \right]^{\frac{1}{2}}.$$

Hence,

$$d_* \le \mathrm{E}\left[\left(T_* - T\right)^2\right] \le d_* + \frac{1}{n} + \mathrm{E}\left[\left(T_* - S_n\right)^2\right] + 2\left(d_* + \frac{1}{n}\right)^{\frac{1}{2}} \mathrm{E}\left[\left(T_* - S_n\right)^2\right]^{\frac{1}{2}}.$$

Since $\mathrm{E}\left[\left(T_* - S_n\right)^2\right] \to 0$, taking limits, $\mathrm{E}\left[\left(T_* - T\right)^2\right] = d_* = \inf_{S \in \mathcal{S}} \mathrm{E}\left[\left(S - T\right)^2\right]$. Next suppose T_{**} also satisfies (A.3). Then as before,

$$E[(T_* - T_{**})^2] = 2E[(T_* - T)^2] + 2E[(T_{**} - T)^2] - 4E\left[\left(\frac{T_* + T_{**}}{2} - T\right)^2\right].$$

Since T_* and T_{**} both satisfy (A.3),

$$E[(T_* - T_{**})^2] = 4d_* - 4E\left[\left(\frac{T_* + T_{**}}{2} - T\right)^2\right].$$

Since S is convex, $\frac{T_*+T_{**}}{2} \in S$ and so,

$$E\left[\left(\frac{T_* + T_{**}}{2} - T\right)^2\right] \ge d_*.$$

Hence,

$$0 \le \mathrm{E}\left[\left(T_* - T_{**} \right)^2 \right] \le 4d_* - 4d_* = 0.$$

The above implies that $\Pr\{T_* \neq T_{**}\} = 0$.

A.2 Projection onto linear subspaces and orthogonality

When the subset for projection is a linear subspace of \mathcal{L}_2 , a useful equivalent characterization of a projection is through an orthogonality condition.

Theorem A.2. Let $T \in \mathcal{L}_2$ and S be a linear subspace of \mathcal{L}_2 . Then T_* satisfies (A.3) if and only if

$$T_* \in \mathcal{S} \quad and \quad \mathbb{E}\left[S \cdot (T - T_*)\right] = 0 \quad \forall S \in \mathcal{S}.$$
 (A.4)

Furthermore, T_* satisfying (A.4) is almost surely unique. That is, if T_{**} also satisfies (A.4), then $\Pr\{T_* \neq T_{**}\} = 0$.

Proof of Theorem A.2. Suppose T_* satisfies (A.4). Then, for any $S \in \mathcal{S}$,

$$E[(T - S)^{2}] = E[(T - T_{*})^{2}] + 2E[(T - T_{*}) \cdot (T_{*} - S)] + E[(T_{*} - S)^{2}]$$
$$= E[(T - T_{*})^{2}] + E[(T_{*} - S)^{2}],$$

where the final equality follows from (A.4) since $T_* - S \in \mathcal{S}$ by linearity of \mathcal{S} . Therefore,

since $E[(T_* - S)^2] \ge 0$, T_* satisfies (A.3).

Next, we prove the converse by proving its contrapositive. To that end, suppose that (A.4) fails. That is, $T_* \notin \mathcal{S}$ or there exists $S_* \in \mathcal{S}$ such that

$$E[S_* \cdot (T - T_*)] \neq 0.$$
 (A.5)

If $T_* \notin \mathcal{S}$, then it is immediate that (A.3) fails. Thus, suppose that $T_*, S_* \in \mathcal{S}$ and (A.5) holds. Note that (A.5) necessitates $\Pr\{S_* \neq 0\} > 0$, i.e. S_* cannot be almost surely zero. Since $\mathcal{S} \subseteq \mathcal{L}_2$, this also implies that $0 < \operatorname{E}[S_*^2] < \infty$. By linearity of \mathcal{S} , $T_* + \tau S_* \in \mathcal{S}$ for every $\tau \in \mathbb{R}$, and

$$E[(T - T_* - \tau S_*)^2] = E[(T - T_*)^2] - 2\tau E[S_* \cdot (T - T_*)] + \tau^2 E[S_*^2].$$

As a function of τ , the above is minimized at

$$\tau_* = \frac{\mathrm{E}\left[S_* \cdot (T - T_*)\right]}{\mathrm{E}\left[S_*^2\right]} \neq 0.$$

The associated minimum value is

$$E[(T - T_* - \tau_* S_*)^2] = E[(T - T_*)^2] - \frac{E[S_* \cdot (T - T_*)]^2}{E[S_*^2]} < E[(T - T_*)^2].$$

This means that (A.3) fails. By contrapositive, we have that if (A.3) holds, then (A.4) must also hold.

Finally, to see that T_* is almost surely unique, let T_{**} also satisfy (A.4). Then,

$$E[(T_* - T_{**})^2] = E[(T_* - T_{**}) \cdot (T_* - T)] + E[(T_* - T_{**}) \cdot (T - T_{**})] = 0,$$

since by linearity of S, $T_* - T_{**} \in S$. The above implies that $\Pr\{T_* \neq T_{**}\} = 0$.

A.3 Second-moment distance between a random variable and its projection

The following result provides a useful characterization of the second moment distance between a random variable and its projection onto a space that contains the constants.

Theorem A.3. Let $T \in \mathcal{L}_2$ and \mathcal{S} be a linear subspace of \mathcal{L}_2 containing the constants (i.e. non-stochastic random variables). Suppose the projection of T onto \mathcal{S} exists and denote this projection by T_* . Then,

$$E\left[\left(T - T_*\right)^2\right] = Var[T] - Var[T_*]. \tag{A.6}$$

Proof of Theorem A.3. By $T_* \in \mathcal{S}$ and (A.4),

$$E[T_* \cdot (T - T_*)] = 0 \iff E[T \cdot T_*] = E[T_*^2]. \tag{A.7}$$

Similarly, since $\mathcal S$ contains the constants,

$$E[T - T_*] = 0 \iff E[T] = E[T_*]. \tag{A.8}$$

Therefore, by (A.7) and (A.8),

$$Cov(T, T_*) = E[TT_*] - E[T]E[T_*] = E[T_*^2] - E[T_*]^2.$$

Hence,

$$Cov(T, T_*) = Var[T_*]. (A.9)$$

Next, by (A.8), $E[T - T_*] = 0$ and so,

$$E[(T - T_*)^2] = Var[T - T_*] = Var[T] + Var[T_*] - 2Cov(T, T_*).$$

Therefore by (A.9),

$$E\left[\left(T - T_*\right)^2\right] = Var[T] - Var[T_*], \tag{A.10}$$

which is exactly (A.6).

A.4 Projection onto sum spaces

Suppose now that $\{Z_j\}_{j=1}^n$ are independent random variables/vectors and let

$$S = \left\{ \sum_{j=1}^{n} g_j(Z_j) : g_j \text{ measurable and } \mathbb{E}\left[g_j(Z_j)^2\right] < \infty \text{ for all } j = 1, \dots, n \right\}.$$
 (A.11)

Theorem A.4. Let $\{Z_j\}_{j=1}^n$ be independent random variables. The projection of an arbitrary random variable $T \in \mathcal{L}_2$ onto the class \mathcal{S} in (A.11) is given by

$$T_* = \sum_{j=1}^n \mathrm{E}[T|Z_j] - (n-1)\mathrm{E}[T] = \mathrm{E}[T] + \sum_{j=1}^n \{\mathrm{E}[T|Z_j] - \mathrm{E}[T]\}.$$

Proof of Theorem A.4. We proceed by verifying the orthogonality condition (A.4). Let $j \in \{1, ..., n\}$ be given. If $g_j(\cdot)$ is a measurable function with $\mathrm{E}\left[g_j(Z_j)^2\right] < \infty$, then certainly $g_j(Z_j) \in \mathcal{S}$. Furthermore,

$$\begin{split} & \operatorname{E}\left[g_{j}\left(Z_{j}\right)\cdot\left(T-T_{*}\right)\right] = \operatorname{E}\left[g_{j}\left(Z_{j}\right)\cdot\left\{T-\operatorname{E}\left[T\right]-\operatorname{E}\left[T|Z_{j}\right]+\operatorname{E}\left[T\right]\right\}\right] \\ & -\sum_{\substack{l=1\\l\neq j}}^{n}\operatorname{E}\left[g_{j}\left(Z_{j}\right)\cdot\left\{\operatorname{E}\left[T|Z_{l}\right]-\operatorname{E}\left[T\right]\right\}\right] \\ & = \operatorname{E}\left[g_{j}\left(Z_{j}\right)\cdot\left\{T-\operatorname{E}\left[T|Z_{j}\right]\right\}\right] \\ & = \operatorname{E}\left[g_{j}\left(Z_{j}\right)\cdot\operatorname{E}\left[\left\{\operatorname{E}\left[T|Z_{l}\right]-\operatorname{E}\left[T\right]\right\}\right]\right] \\ & = 0. \end{split}$$

In the last line above, the second term is zero since $E[E[T|Z_l]] = E[T]$ for every l and the

first term is zero by definition of $\mathrm{E}\left[T|Z_{j}\right]$. Now, take a sum of such functions $g_{j}\left(Z_{j}\right)$ over $j=1,\ldots,n$:

$$E\left[\left(\sum_{j=1}^{n} g_{j}\left(Z_{j}\right)\right) \cdot \left(T - T_{*}\right)\right] = \sum_{j=1}^{n} E\left[g_{j}\left(Z_{j}\right) \cdot \left(T - T_{*}\right)\right] = \sum_{j=1}^{n} 0 = 0.$$

B Exercises in counting

Theorem B.1. Let m, p, n be natural numbers and c be a non-negative integer such that $c \leq \min\{m, p\}$ and $\max\{m, p\} \leq n$. Let $a = \{a_i\}_{i=1}^m, b = \{b_i\}_{i=1}^p \subseteq \{1, \dots, n\}$ where $i \mapsto a_i$ and $i \mapsto b_i$ are both strictly increasing. There are $\binom{n}{m} \cdot \binom{m}{c} \cdot \binom{n-m}{p-c}$ ways to select a and b such that they have exactly c elements in common.

Proof of Theorem B.1. Let C denote the number of ways to pick a and b with exactly c common elements. We can select a and b with exactly c common elements by first selecting a, then selecting c elements of a that will be common with b, and finally selecting b to ensure only those c elements are common to a and b. Therefore,

$$C=\#$$
 of ways to select a \times $\#$ of ways to select c elements of a in common with b \times $\#$ of ways to select remaining elements of b

Clearly,

$$\# \text{ of ways to select } a = \binom{n}{m},$$

$$\# \text{ of ways to select } c \text{ elements of } a = \binom{m}{c}.$$

Then, consider the last problem of selecting the remaining elements of b that are not common

with a. Since the c common elements have already been selected, there are p-c remaining elements of b requiring selection. Since we have fulfilled the "exactly c elements in common" constraint, this selection must be from $\{1, \ldots, n\} \setminus a$, which has cardinality n-m. Therefore, upon fixing a and the c common elements,

of ways to select remaining elements of
$$b = \binom{n-m}{p-c}$$
.