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1 Definitions of U-Statistics and V-Statistics

Throughout, all randomness is defined on a probability space (2,.%, Pr) with E[-] and Var[']
denoting expectation and variance respectively against Pr. Furthermore, {Z;}!" | is a sample
of i.i.d. random vectors, with F' denoting their common distribution. Finally || - || denotes
the Euclidean norm for vectors.

For n,m € N with n > m, define

Nn:{Lan}:{jeN]Sn}a
Mjpm =11 ENT [k €N,y j # K] = i(5) #i(k)}, (1.1)

Nonlnj,, ., =Ni" \ Inj, ., = {i € NV : 35,k € N,,,, j # k such that i(j) =i(k)}.

In (1.1), Inj stands for “injective” (i.e. one-to-one) and Nonlnj stands for “non-injective”.

The cardinality of Inj,, ,,, is

m—1
Yo = |Ij, | = ] (0 = k). (1.2)
k=0
For a function 7 (x4, ..., x,,), the associated U- and V-statistics are respectively:
1
U’n(n) = ~ Z n (Zl(l)a 7Zz(m)) ’
M clnj
1 i (1.3)
Va(n) = m Z 0 (Ziqy, - - Zigm))
ieNm

The function 7 is called a kernel and the number of arguments m := m,,, is called the order of
the kernel. Though the order m is dependent on 7, we suppress this dependence for brevity.

In addition, we hold m fixed throughout and impose the restriction n > m.



The kernel n is permutation symmetric iff

for any permutation {i(1),...,i(m)} of {1,...,m},

n (Zi(l)a---azi(m)) =121, 2m) -

When 7 is permutation symmetric, the corresponding U-statistic in (1.3) becomes

Un(n):<n)1 N 0 (Ziy s Zimy)

m .
1€Incn,m

where Inc,, ,, C Inj, , is the collection of strictly increasing index vectors:

e, = {(i(1),...,i(m)) € N": [j,1 € Ny, j <[] = i(j) <i(])}. (1.4)

2 First order sum-space projection of U-statistics

We now consider the projection of the U-statistic U, (n, F') onto the sum-space for the n i.i.d.

random variables Z1,..., Z, drawn from F. Denote this sum space by
S, = 8S,(F) = {Z 9; (Z;):VjeN,, Z;~F,g; measurable,/g?dF < oo} (21
j=1
Henceforth, let m > 2. Denote

o(n) =T, F) i= B [1 (Zas . Zo)], 22)
Vee Ny, Te(z1,..0,2em) = (21, .., 26m, F)
=Epm 0 (Z1,...,Z0) |21 = 21,.. ., Zc = 2]
:/n(zl,...,zc,zc+1,...,zm)Fm_c(dzC+1,...,dzm),

(2.3)



~

and ﬁn(n) =Un(n, F)

::HO(n,F)Jr%Z{Hl (Zym ) =Tho(m F)Y g )

=T1o(n) + % > A0 (Z5;m) = To(n)}

In all of the above expressions, the notation expresses the fact that though the functions II,.
and ﬁn all depend on both 1 and F', we shall suppress dependence on F. We follow this

scheme throughout, so that E = Eg» throughout.
Lemma 2.1. U,(n) in (2.4) is the projection of U,(n) onto the sum space S, in (2.1).

Proof of Lemma 2.1. We apply Theorem A.4. Take any ¢ € Inj, .. Then, for any j =

17 7n7
My(zm) i 5 € i), i(m)},
E [77 (Zz(1)7 >Zz(m))|Zj = Z:| =
y(n) otherwise.
For fixed j € {1,...,n}, consider averaging over i € Inj, . The first case happens m -

Tn—1,m—1 times. To see this, given an ‘empty’ m-vector 7, there are m possible places to place

j and v¥,_1,,—1 Ways to select the remaining elements of ¢. Hence

E[Un(n)|Z;] = L . EWn(Ziay- s Ziom)| Z)]

Tnm i€Inj,,
_mVn;l,m—1H1 (Zj;77> X (1 _ m%;l,m—1) Ho(ﬁ)-

Since Yn—1.m—1/Ynm = 1/n,

E[Un(mI 4] = 210 (Ziim) + (1= =) o(a).



Apply Theorem A.4; the projection of U, (n) is therefore

E[Un(n)] + Z (E[U.()Z;] = E[Un(n)])

— (1) + Zi: <%H1 (Zsim) + (1 - %) Mo(n) — Ho(ﬂ))

as desired. O

3 % distance between a U-statistic and its first order
sum-space projection under permutation symmetry

In this section, we assume that the kernel 7 is permutation symmetric. Hence, the relevant
set of indices to work with is Inc,, ,, in (1.4). Consider the (squared) .%, distance between a

U-statistic and its projection, [/J\n(n, F), onto the first order sum space S, defined in (2.1):

o) = . F) = B | (0l) — Ot 1)) 3.1)

We can readily apply Theorem A.3 since S,, contains the constant (non-stochastic) random

variables. Hence, (3.1) becomes

pu(n) = Var [Us(n)] = Var | Ua(n)] (3:2)

The variance of U, (n) is easily characterized:

Var [(7"(77)] = T%Var 11, (Z; )] . (3.3)



Furthermore, we can always write

Var [Un<n)] = (n) ) Z Z Cov (77 (Zi(l)7 ceey Zi(m)7) , M (Zi’(l)a ceey Zi’(m))) . (34)

m . .,
1€Incn,m i €Incn,m

We now introduce a notation scheme that will help us to simplify (3.4) and will allow us
to provide a unified treatment of (3.3) and (3.4) under i.i.d. Z,...,Z,. For 0 < ¢ < m,

denote

Ce(n) = C(n, F) :=Varpe 1. (Z1, ..., Z¢;n, F))

(3.5)
=Varge [Epm 0 (Z1,..., Z0)| 20, ..., Zc]] -
It can be shown that (.(n) has the following alternative representation:
CC(T]) = COV (T] (Zla ey Zc: Zl,c+17 ey Zl,m) ,7] (Zl, ey Zm Z2,c+17 ey Zva)) y (36)

where {Z; }’;:1, {Z, }?:1 and {Z ; }?:1 are all mutually independent random vectors all with
distribution F'. That is, (.(n) is the covariance of 7 (Zi(1), e Zi(m)) and 7 (Zi/(1), e Zi/(m))
when i and ¢ are strictly increasing and have exactly ¢ elements in common. Of course for
¢ =0, (o(n) = 0 by independence of the Z;’s.

Revisiting (3.3) using (3.5),

m2

Var | Oa(m)] = Z=Gi(n). (3.7)

For (3.4), we can instead use (3.6). Since there are (”)(™) (" ™) pairs 4,7 € Inc,,, with

m—c

exactly ¢ elements in common (see Theorem B.1 for a formal statement and proof),

var (o) = ) ) Eml ()0 (et
~() B Y )em by ot =

c=1



and so,

vartwanl =30 (") (1) (e, 35)

c=1

Combining (3.2), (3.7) and (3.8),

won =3 (")(1) (e - ", 39)

c=1

Theorem 3.1. For m € N\ {1}, let n be a m™ order kernel that is permutation symmetric.
Furthermore, let F' be a probability measure such that n € £ (F™). Let p,(n,F) be as

defined in (3.1). In the case of m = 2, we have the equality

2

Pn(ﬁ»F):m

(Er [Varpz [n (21, 22)|21]] = Varg [Bp [n(Z1, 25)|200]) . (3.10)

More generally, for any m > 2, we can bound p,(n, F') by

m2(m —1)% (1 + 21

pn(n, F) < - n—m+1 G (0, F)
Y 3.11)
1 (m!)? (
. 1+ 0pme) Ce(n, F),
+;%c (om — oyiyzal (LT dnme) Geln, F)
where for each c € {2,...,m}, the quantities 0, are do not depend onn, F or the dimen-

sion of Z; (except possibly through n and m) and satisfy lim, o dpm.c = 0.

3.1 Proof of Theorem 3.1 in the case of m = 2

For m = 2, (3.9) becomes

pn(n) :% (EZ — i;: EZ — g;: -~ 1) Gln) + (Z)lﬁ(n)
:% (Z — i - 1) G(n) + n(nz_ 1)@(77),



and so

2

pu() = Y p— (C2(n) = 2C1(m)) - (3.12)

Since m = 2, Iy (-;n7) = n(-). Using (3.5),

C2(n) = Var 1 (Z1, Z5)]
[by Law of Total Variance| = Var[E[n(Z1,Zs)|Z1]] + E [Var [n(Z1, Z2)| Z1]]
= Var 1Ly (Z1;n)] + E [Var [1 (Z1, Z2)| Z1]]

=G(n) + E[Var[n (21, Z5)| Z4]] .

Then, from (3.12), using the fact that (;(n) = Var [E [n(Z1, Z5)|Z1]] (from (3.5)),

pu(n) = nn = 1) (E[Var [ (21, Z2)| Z1]] — Var [E [n (21, Z2)| Z4]])

which is exactly (3.10). O

3.2 Proof of Theorem 3.1 in the case of m > 2

For m > 2, recall that in (3.9),

won=3 (") (1) (1 e - e,

c=1

For ¢ = m,




Thus,

for ¢ = m, <n) (n m)—L—(l+6nmc),
m m—c (m — ) e o

where 0,, . =0, for each n.

Now let ¢ € {2,...,m — 1}. Then,

(n) (L) et

_m! (n—m)!  (n—m)
(m —¢)! n! (n—2m+c)!
__m! (n—m)---(n=2m+c+1)
(m —c)! n.-(n—m+1) '

The numerator has m — ¢ terms, whereas the denominator has m terms. Hence for fixed m

we can factor out 1/, to get

(n)l(n—m) m! (n—m)---(n—2m+c+1)

_(m—c)!. nn—1)---(n—m+1)

) _ m! 1 (n=—m)---(n=2m+c+1)
(m—c¢c)! n---(n—c+1) (n—c)---(n—m+1)
m! 1 .(n—m)«~~(n—2m—|—c—|—1)'

(m—c)!'fyn,C n—c)---(n—m+1)

Factorising the ratio in the end further,
n\ ' /n—m o om! 1 et . m—c
m m—c) (m—c) Yoo 4 n—c—1)"

m—c—1
m —=c¢
Onme = l——— || — 1L 3.13

Therefore, set



Then,

(n) () - s 0 )

where lim 9, , . =0, for each ¢ < m.
n—oo

Therefore, applying the above expression to (3.9)

pu(m) = L. <m!)‘ 37 (L F Onime) Ce(n) = %Q(n)

=1 Yn,e ((m - C)')
2 m 1 2
- % nnaCi(m) + > . >>')2C| (1 + Onmie) Ce(n)- (3.14)
c=2 n,c .

For fixed ), visual inspection of (3.14), first suggests that the term corresponding to ¢ = 1
will exhibit the slowest tendency towards zero, unless d,,,,1 = O(1/n). We can show that

dnm1 = O(1/n) is in fact true. To that end, from (3.13),

-1 —1
5= (1=-" O L
Y n—1 n—m-+1

By Billingsley (1995, Lemma 1, p. 358), given any [ € N and 2y 1, 221, . . ., 21, 22; € C with

|Zj,k‘| <1,

|2’1,1 U210 TR0t ZQ,Z| < Z |21,k - Z2,k| .

Applying this with [ = m—1, z; ; = 1—((m—1)/(n—j)) and 25 ; = 1 forevery j = 1,...,m—1,

nml

33
W‘»—t
—_
e
VR
—_
+
3

e
S
—+ | =
—_

N—
S|=
w
—_
=

m? = (m!)?

< e ((m—)l)2

(1+ 5n,m,6) Ce(n)

10



< S | G0) + Y- e (1 b))
so that
oty < T2 = Ut amn)
" i o T () 660
which is exactly (3.11). O

4 Asymptotic comparison of U- and V-statistics

Theorem 4.1. If ¢ € [1,00) and max;enm E [Hn (Ziqay, - - - Zi(m))”q] < 00

1 —1 1
B(10,0) - Vel < ™" maxB [l (Zigy, - Z) [T (@)
Proof of Theorem 4.1. Apply Lemma 4.1:
E[||Un(n) — Va(n)||9s < MmaxE[H (Zi 7 )”q]%
n\T] nm iEeNm n < ey Li(m)

By Lemma 4.2, n™ —7,,,, = (m(m—1)/2)n™"! so that (2 (n™ — v,.m)) /n™ = (m(m—1))/n.
Hence (4.1) follows. L

Lemma 4.1. Let T be a non-empty finite set and {a, : © € I} be a subset of a normed space

with norm || - ||. Let Zy C Z be a strict subset of Z, i.e. |Z\ Zy| > 1. Define

|I] Z a,, |Io Zab, W = |I|—| T Z a,. (4.2)

€L L€y SYAVA

11



Then, the following hold

IZ] = %o

Vo= ) (4.3)
7| — |7,
v - vl <2 ). (4.4)

Proof of Lemma 4.1. From (4.2), |Z|V = }_ 7 av + X eng, @ = [Zo|U + (|Z] — [Zo]) W.

Subtract |Z|U from both sides, so that |Z|(V — U) = (|Z| — |Zy|) (W — U). Division by |Z|

establishes (4.3). For (4.4), by (4.3) and the triangle inequality,

2] — %o

— =W <
1]

2] = | Zo]
IZ|

Z| - |Z|

U=Vl =
1]

(Ul +1w1)

<2 max{|[U][, [IW][}-

Since U and W are arithmetic averages over subsets of Z, we get max{||U]||, [|[W]} <

max,c7 ||a,|| from repeated applications of the triangle inequality. This establishes (4.4). O

Lemma 4.2. For n,m € N, with n > m, with v, as in (1.2),

—1
" = Ypm = m(mT)nm_l. (4.5)

Proof of Lemma 4.2. For m = 1, (4.5) follows from ~,; = n by definition in (1.2). For

m = 2, by definition in (1.2), 7,2 = n(n — 1). Thus
n® — Yo =n>—n(n—1) =n,

so that (4.5) follows for m = 2.

Now we verify (4.5) for m > 2. Note that

m .
n" = Ypm = ‘NonInt]n’m )

12



where as in (1.1),
Nonlnj,, ,, = {7 € NJ' : 35,k € N,,, j # k such that i(j) = i(k)}.
Now consider the task of picking an element from Nonlnj,, ,,. Recall that we are consid-
ering the cases m > 2. We can exhaust Nonlnj, ,, by using the following steps:
1. Pick two indices j, k € N,,, such that j < k;
2. Select i(j) € N,, and set i(k) = i(j);
3. Pick the restriction {i(l) : I € N,, \ {J, k¥}} € N™2 arbitrarily.

There are m(m — 1)/2 ways to complete step 1. For each instance of step 1, there are n
ways to complete step 2. Finally, for each instance of steps 1 and 2, there are n™ 2 ways to

complete step 3. Therefore,

—1
n— Ynm = NonInjn’m| = % “n

m—1

References
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A Preliminaries on projections

Denote the set of random variables that are square-integrable against Pr by
L = L (Pr) = {X B [|IX°] = / | X|?dPr < oo} : (A1)

It is well known that %, is a Hilbert space under the inner product (X,Y) = E[X -Y]. That
is, the inner product space (%, (-,-)) is a complete metric space under the induced normed

metric:
P (XY =X -Y[=(X-YV,X-Y)=E[X-Y])] VXYL (A.2)
Let S C % (Pr) and T € %,. T, € S is a projection of T onto § if and only if

T.€S and E[(T-T)°]<E[(T-S5)? VSeS. (A.3)

A.1 Existence of projections onto closed and convex subsets

Theorem A.1 shows that a projection on S C .% exists whenever S is closed and convex.

Theorem A.1. Let T € % and let S C % be closed and convex. Then there exists T,
satisfying (A.3). Furthermore, T, is almost surely unique, i.e. if T.. also satisfies (A.3),
then Pr{T, # T..} = 0.

Proof of Theorem A.1. Let

d, = érégE [(S—T)7].

Then for each n € N, there necessarily exists S,, € S such that

1
2
d*gE[(Sn—T)}gd*Jrﬁ.

14



Furthermore for any n,m € N,

E[(Sy = Sn)?’] =E (S0 = T)’] +E[(Sp. — T)°] = 2E((S,, — T) (Sw. — T)],

2
(Sn + S T)
2

This implies

4R =E[(Sy —T)’] +E[(Sm — T)*] +2E[(Su — T) (Sp, — T)] -

E[(Sy = Sw)?] = 2E [(Su — T)°] + 2E [(S,, — T)?] — 4E

2
(Sn+5m >
2

Since S is convex, i (S, +5,,) € S and so, E [{% (Sp+ Sm) — T}Z] > d,. Using the upper

bounds in the definition of S,, and S,,,, and the lower bound now established,

E (S, — Sm)?] §2(d*+%)+2<d*+%>—4d*:2(l+i>.

n m

Hence, {S,} is Cauchy in S. Since %, is complete and S is a closed subset of %, S is also

necessarily complete. Thus, there is a T, € § such that lim,,_,. E [(Sn — T*)2] = 0. Then,

d. <E[(T. —T)’] =E[(S0 = T)*] +E[(T% = S.)*] + 2E[(Sn = T) - (T, — S,,)]

N

[(Sy — 7)) + E[(T. — 8,)] + 2B [(S, — T)’]* E[(T. — 5,)] .

Hence,

d, <E[(T.-T)’] < d. + % +E[(T. — S,)*] +2 (d* + %)E (T - S,)%]° .

N

Since E [(T. — S,)*] — 0, taking limits, E [(7, — 7)*] = d. = infses E [(S — T)?].

Next suppose T, also satisfies (A.3). Then as before,

E[(T. — Tw.)?] =2E [(T. — T)°] + 2E [(T.. — T)°] — 4E

T* *k3k 2
< + T T) '
2

15



Since T, and T, both satisfy (A.3),

E[(T, — T..)’] = 4d. — 4E

Since S is convex, Lt ¢ S and so,

2
T, +T., 2
E ( J; —T) > d,.

Hence,

0<E[(T. - T.)°] <4d. —4d, =0.

The above implies that Pr {7, # T,,} = 0. O

A.2 Projection onto linear subspaces and orthogonality

When the subset for projection is a linear subspace of .45, a useful equivalent characterization

of a projection is through an orthogonality condition.

Theorem A.2. Let T € % and S be a linear subspace of £. Then T, satisfies (A.3) if
and only if
T.€¢S and E[S-(T-T.)]=0 VSeS. (A.4)

Furthermore, T, satisfying (A.4) is almost surely unique. That is, if Ty, also satisfies (A.4),
then Pr{T, # T..} = 0.

Proof of Theorem A.2. Suppose T, satisfies (A.4). Then, for any S € S,

E[(T - 8] =E[(T - T.)*] + 2E[(T - T.) - (T. - 8)| + E [(T. - 5’

~B[(T - T + BT~ 57,

where the final equality follows from (A.4) since T, — S € S by linearity of S. Therefore,

16



since E [(T% — S)Q} > 0, T. satisfies (A.3).
Next, we prove the converse by proving its contrapositive. To that end, suppose that

(A.4) fails. That is, T, ¢ S or there exists S, € S such that
E[S.- (T —1T.)] #0. (A.5)

If T, ¢ S, then it is immediate that (A.3) fails. Thus, suppose that T, S, € S and (A.5)
holds. Note that (A.5) necessitates Pr{S, # 0} > 0, i.e. S, cannot be almost surely zero.
Since S C %, this also implies that 0 < E[S?] < co. By linearity of S, T}, + 75, € S for

every 7 € R, and
E[(T-T.—75) =E[(T - T.)°] —2rE[S,.- (T - T.)] + °E [S?] .

As a function of 7, the above is minimized at

E[S. - (T -T.)]
E[S?]

£ 0.

Te =

The associated minimum value is

E[S. - (T —T.))"
E[S7]

E[(T-T.-7S)° ] =E[(T - T.)*] - <E[(T-T.)".

This means that (A.3) fails. By contrapositive, we have that if (A.3) holds, then (A.4) must
also hold.

Finally, to see that T, is almost surely unique, let T\, also satisfy (A.4). Then,
E[(T. - T.)’] = E(T. = Tw) - (T = )] + E[(T. = To) - (T = To)] = 0,

since by linearity of S, T, — T.. € S. The above implies that Pr{T, # T..} = 0. O

17



A.3 Second-moment distance between a random variable and its

projection

The following result provides a useful characterization of the second moment distance be-

tween a random variable and its projection onto a space that contains the constants.

Theorem A.3. Let T € £ and S be a linear subspace of £ containing the constants (i.e.

non-stochastic random variables). Suppose the projection of T onto S exists and denote this

projection by T,. Then,
E[(T - T.)%] = Var[T] — Var[T.] .

Proof of Theorem A.3. By T, € § and (A.4),
E[T. - (T-T.)]=0 < E[T-T.)=E[T7].
Similarly, since S contains the constants,
ET-T.=0 < E[T|=EI[T,].
Therefore, by (A.7) and (A.8),
Cov(T,T,) =E[TT.| - E[TE[T.] = E [T?] - E[T.]>.

Hence,

Cov (T,T,) = Var[T].

Next, by (A.8), E[T"—T] = 0 and so,

E[(T - T.)?] = Var [T — T..] = Var[T] + Var [T.] — 2Cov (T, T.).

18
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Therefore by (A.9),
E[(T - T.)*] = Var[T] — Var [T.], (A.10)

which is exactly (A.6). O

A.4 Projection onto sum spaces

Suppose now that {Z; }?:1 are independent random variables/vectors and let

{Z 9j (Z;) : g; measurable and E [g] (Z-)Q} <ooforall j=1,... ,n} . (A.11)

Theorem A.4. Let {Zj}?zl be independent random variables. The projection of an arbitrary

random variable T € % onto the class S in (A.11) is given by
T, = ZE [T|Z;] = (n = VE[T] = E[T] + > {E[T|Z;] - E[T]}.
j=1

Proof of Theorem A.4. We proceed by verifying the orthogonality condition (A.4). Let j €
{1,...,n} be given. If g;(-) is a measurable function with E [g; (Zj)ﬂ < 00, then certainly

g; (Z;) € S. Furthermore,

Blg; (%)) - (T =T.)] =E [gj (Z;) AT - E[T] - E[T|Z;] + E[T1}]

~N"Elg; (7)) - {E[T| %) - E[T]}]
l#]
=Elg; (Z)) - {T - E[T|Z,]}]

by Z; 1L Z)] ZE 95 (Z;)] - EQE[T|Z)] - E[T]}]
1753
=0.
In the last line above, the second term is zero since E[E [T'|Z)]] = E[T] for every [ and the

19



first term is zero by definition of E [T'|Z;]. Now, take a sum of such functions g; (Z;) over

j=1...,n

E [(Z 0 <Zj>) (-7

B Exercises in counting

Theorem B.1. Let m,p,n be natural numbers and ¢ be a non-negative integer such that
¢ < min{m, p} and max{m,p} <n. Let a = {a;}~,,b={b},_, C{1,...,n} where i q
and i — b; are both strictly increasing. There are (;) . (’Z) . (’;__TC”) ways to select a and b

such that they have exactly ¢ elements in common.

Proof of Theorem B.1. Let C denote the number of ways to pick a and b with exactly ¢
common elements. We can select a and b with exactly ¢ common elements by first selecting
a, then selecting ¢ elements of a that will be common with b, and finally selecting b to ensure

only those ¢ elements are common to a and b. Therefore,

C =7 of ways to select a
x # of ways to select ¢ elements of a in common with b

x # of ways to select remaining elements of b

Clearly,

n
# of ways to select a = ( ),
m

m
# of ways to select ¢ elements of a = ( )
c

Then, consider the last problem of selecting the remaining elements of b that are not common
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with a. Since the ¢ common elements have already been selected, there are p — ¢ remaining
elements of b requiring selection. Since we have fulfilled the “exactly ¢ elements in common”
constraint, this selection must be from {1,...,n}\a, which has cardinality n —m. Therefore,

upon fixing a and the ¢ common elements,

n—m
# of ways to select remaining elements of b = ( )
p—c
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