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1 Definitions of U-Statistics and V-Statistics

Throughout, all randomness is defined on a probability space (Ω,F ,Pr) with E[·] and Var[·]

denoting expectation and variance respectively against Pr. Furthermore, {Zi}ni=1 is a sample

of i.i.d. random vectors, with F denoting their common distribution. Finally ∥ · ∥ denotes

the Euclidean norm for vectors.

For n,m ∈ N with n ≥ m, define

Nn = {1, . . . , n} = {j ∈ N : j ≤ n},

Injn,m = {i ∈ Nm
n : [j, k ∈ Nm, j ̸= k] =⇒ i(j) ̸= i(k)} ,

NonInjn,m =Nm
n \ Injn,m = {i ∈ Nm

n : ∃j, k ∈ Nm, j ̸= k such that i(j) = i(k)} .

(1.1)

In (1.1), Inj stands for “injective” (i.e. one-to-one) and NonInj stands for “non-injective”.

The cardinality of Injn,m is

γn,m :=
∣∣Injn,m∣∣ = m−1∏

k=0

(n− k). (1.2)

For a function η (x1, . . . , xm), the associated U- and V-statistics are respectively:

Un(η) =
1

γn,m

∑
i∈Injn,m

η
(
Zi(1), . . . , Zi(m)

)
,

Vn(η) =
1

nm

∑
i∈Nm

n

η
(
Zi(1), . . . , Zi(m)

)
.

(1.3)

The function η is called a kernel and the number of arguments m := mη, is called the order of

the kernel. Though the order m is dependent on η, we suppress this dependence for brevity.

In addition, we hold m fixed throughout and impose the restriction n ≥ m.
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The kernel η is permutation symmetric iff

for any permutation {i(1), . . . , i(m)} of {1, . . . ,m},

η
(
zi(1), . . . , zi(m)

)
= η (z1, . . . , zm) .

When η is permutation symmetric, the corresponding U-statistic in (1.3) becomes

Un(η) =

(
n

m

)−1 ∑
i∈Incn,m

η
(
Zi(1), . . . , Zi(m)

)
,

where Incn,m ⊆ Injn,m is the collection of strictly increasing index vectors:

Incn,m = {(i(1), . . . , i(m)) ∈ Nm
n : [j, l ∈ Nm, j < l] =⇒ i(j) < i(l)} . (1.4)

2 First order sum-space projection of U-statistics

We now consider the projection of the U-statistic Un(η, F ) onto the sum-space for the n i.i.d.

random variables Z1, . . . , Zn drawn from F . Denote this sum space by

Sn := Sn(F ) :=

{
n∑

j=1

gj (Zj) : ∀j ∈ Nn, Zj ∼ F, gj measurable,
∫

g2jdF < ∞

}
. (2.1)

Henceforth, let m ≥ 2. Denote

Π0(η) :=Π0(η, F ) := EFm [η (Z1, . . . , Zm)] , (2.2)

∀c ∈ Nm−1, Πc (z1, . . . , zc; η) :=Πc (z1, . . . , zc; η, F )

:=EFm [η (Z1, . . . , Zm) |Z1 = z1, . . . , Zc = zc]

=

∫
η (z1, . . . , zc, zc+1, . . . , zm)F

m−c (dzc+1, . . . , dzm) ,

(2.3)
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and Ûn(η) := Ûn(η, F )

:=Π0(η, F ) +
m

n

n∑
j=1

{Π1 (Zj; η, F )− Π0(η, F )}

=Π0(η) +
m

n

n∑
j=1

{Π1 (Zj; η)− Π0(η)} .

(2.4)

In all of the above expressions, the notation expresses the fact that though the functions Πc

and Ûn all depend on both η and F , we shall suppress dependence on F . We follow this

scheme throughout, so that E ≡ EFn throughout.

Lemma 2.1. Ûn(η) in (2.4) is the projection of Un(η) onto the sum space Sn in (2.1).

Proof of Lemma 2.1. We apply Theorem A.4. Take any i ∈ Injn,m. Then, for any j =

1, . . . , n,

E
[
η
(
Zi(1), . . . , Zi(m)

)∣∣Zj = z
]
=


Π1(z; η) if j ∈ {i(1), . . . , i(m)} ,

Π0(η) otherwise.

For fixed j ∈ {1, . . . , n}, consider averaging over i ∈ Injn,m. The first case happens m ·

γn−1,m−1 times. To see this, given an ‘empty’ m-vector i, there are m possible places to place

j and γn−1,m−1 ways to select the remaining elements of i. Hence

E [Un(η)|Zj] =
1

γn,m

∑
i∈Injn,m

E
[
η
(
Zi(1), . . . , Zi(m)

)∣∣Zj

]
=m

γn−1,m−1

γn,m
Π1 (Zj; η) +

(
1−m

γn−1,m−1

γn,m

)
Π0(η).

Since γn−1,m−1/γn,m = 1/n,

E [Un(η)|Zj] =
m

n
Π1 (Zj; η) +

(
1− m

n

)
Π0(η).
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Apply Theorem A.4; the projection of Un(η) is therefore

E [Un(η)] +
n∑

j=1

(E [Un(η)|Zj]− E [Un(η)])

=Π0(η) +
n∑

j=1

(m
n
Π1 (Zj; η) +

(
1− m

n

)
Π0(η)− Π0(η)

)
=Π0(η) +

m

n

n∑
j=1

{Π1 (Zj; η)− Π0(η)}

= Ûn(η),

as desired.

3 L2 distance between a U-statistic and its first order

sum-space projection under permutation symmetry

In this section, we assume that the kernel η is permutation symmetric. Hence, the relevant

set of indices to work with is Incn,m in (1.4). Consider the (squared) L2 distance between a

U-statistic and its projection, Ûn(η, F ), onto the first order sum space Sn defined in (2.1):

ρn(η) := ρn(η, F ) := EFn

[(
Un(η)− Ûn(η, F )

)2]
. (3.1)

We can readily apply Theorem A.3 since Sn contains the constant (non-stochastic) random

variables. Hence, (3.1) becomes

ρn(η) = Var [Un(η)]− Var
[
Ûn(η)

]
. (3.2)

The variance of Ûn(η) is easily characterized:

Var
[
Ûn(η)

]
=

m2

n
Var [Π1(Z; η)] . (3.3)
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Furthermore, we can always write

Var [Un(η)] =

(
n

m

)−2 ∑
i∈Incn,m

∑
i′∈Incn,m

Cov
(
η
(
Zi(1), . . . , Zi(m),

)
, η
(
Zi′(1), . . . , Zi′(m)

))
. (3.4)

We now introduce a notation scheme that will help us to simplify (3.4) and will allow us

to provide a unified treatment of (3.3) and (3.4) under i.i.d. Z1, . . . , Zn. For 0 ≤ c ≤ m,

denote

ζc(η) := ζc(η, F ) :=VarF c [Πc (Z1, . . . , Zc; η, F )]

=VarF c [EFm [η (Z1, . . . , Zm)|Z1, . . . , Zc]] .

(3.5)

It can be shown that ζc(η) has the following alternative representation:

ζc(η) = Cov (η (Z1, . . . , Zc, Z1,c+1, . . . , Z1,m) , η (Z1, . . . , Zc, Z2,c+1, . . . , Z2,m)) , (3.6)

where {Zj}nj=1, {Z1,j}nj=1 and {Z2,j}nj=1 are all mutually independent random vectors all with

distribution F . That is, ζc(η) is the covariance of η
(
Zi(1), . . . , Zi(m)

)
and η

(
Zi′(1), . . . , Zi′(m)

)
when i and i′ are strictly increasing and have exactly c elements in common. Of course for

c = 0, ζ0(η) = 0 by independence of the Zj’s.

Revisiting (3.3) using (3.5),

Var
[
Ûn(η)

]
=

m2

n
ζ1(η). (3.7)

For (3.4), we can instead use (3.6). Since there are
(
n
m

)(
m
c

)(
n−m
m−c

)
pairs i, i′ ∈ Incn,m with

exactly c elements in common (see Theorem B.1 for a formal statement and proof),

Var [Un(η)] =

(
n

m

)−2 m∑
c=0

(
n

m

)(
m

c

)(
n−m

m− c

)
ζc(η)

=

(
n

m

)−2 m∑
c=1

(
n

m

)(
m

c

)(
n−m

m− c

)
ζc(η) [by ζ0(η) = 0],
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and so,

Var [Un(η)] =
m∑
c=1

(
m

c

)(
n

m

)−1(
n−m

m− c

)
ζc(η). (3.8)

Combining (3.2), (3.7) and (3.8),

ρn(η) =
m∑
c=1

(
m

c

)(
n

m

)−1(
n−m

m− c

)
ζc(η)−

m2

n
ζ1(η). (3.9)

Theorem 3.1. For m ∈ N \ {1}, let η be a mth order kernel that is permutation symmetric.

Furthermore, let F be a probability measure such that η ∈ L2 (F
m). Let ρn(η, F ) be as

defined in (3.1). In the case of m = 2, we have the equality

ρn(η, F ) =
2

n(n− 1)
(EF [VarF 2 [η (Z1, Z2)|Z1]]− VarF [EF 2 [η (Z1, Z2)|Z1]]) . (3.10)

More generally, for any m ≥ 2, we can bound ρn(η, F ) by

ρn(η, F ) ≤
m2(m− 1)2

(
1 + m−1

n−m+1

)
n2

ζ1(η, F )

+
m∑
c=2

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η, F ),

(3.11)

where for each c ∈ {2, . . . ,m}, the quantities δn,m,c are do not depend on η, F or the dimen-

sion of Zi (except possibly through n and m) and satisfy limn→∞ δn,m,c = 0.

3.1 Proof of Theorem 3.1 in the case of m = 2

For m = 2, (3.9) becomes

ρn(η) =
4

n

(
(n− 2)!

(n− 1)!
· (n− 2)!

(n− 3)!
− 1

)
ζ1(η) +

(
n

2

)−1

ζ2(η)

=
4

n

(
n− 2

n− 1
− 1

)
ζ1(η) +

2

n(n− 1)
ζ2(η),
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and so

ρn(η) =
2

n(n− 1)
(ζ2(η)− 2ζ1(η)) . (3.12)

Since m = 2, Π2 (·; η) = η(·). Using (3.5),

ζ2(η) =Var [η (Z1, Z2)]

[by Law of Total Variance] =Var [E [η (Z1, Z2)|Z1]] + E [Var [η (Z1, Z2)|Z1]]

=Var [Π1 (Z1; η)] + E [Var [η (Z1, Z2)|Z1]]

= ζ1(η) + E [Var [η (Z1, Z2)|Z1]] .

Then, from (3.12), using the fact that ζ1(η) = Var [E [η (Z1, Z2)|Z1]] (from (3.5)),

ρn(η) =
2

n(n− 1)
(E [Var [η (Z1, Z2)|Z1]]− Var [E [η (Z1, Z2)|Z1]]) ,

which is exactly (3.10).

3.2 Proof of Theorem 3.1 in the case of m > 2

For m > 2, recall that in (3.9),

ρn(η) =
m∑
c=1

(
m

c

)(
n

m

)−1(
n−m

m− c

)
ζc(η)−

m2

n
ζ1(η).

For c = m,

(
n

m

)−1(
n−m

0

)
=

(n−m)!m!

n!
=

m!

γn,m
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Thus,

for c = m,

(
n

m

)−1(
n−m

m− c

)
=

m!

(m− c)!

1

γn,c
(1 + δn,m,c) ,

where δn,m,c =0, for each n.

Now let c ∈ {2, . . . ,m− 1}. Then,

(
n

m

)−1(
n−m

m− c

)
=

(n−m)!m!

n!
· (n−m)!

(n− 2m+ c)!(m− c)!

=
m!

(m− c)!
· (n−m)!

n!

(n−m)!

(n− 2m+ c)!

=
m!

(m− c)!
· (n−m) · · · (n− 2m+ c+ 1)

n · · · (n−m+ 1)
.

The numerator has m− c terms, whereas the denominator has m terms. Hence for fixed m

we can factor out 1/γn,c to get

(
n

m

)−1(
n−m

m− c

)
=

m!

(m− c)!
· (n−m) · · · (n− 2m+ c+ 1)

n(n− 1) · · · (n−m+ 1)

=
m!

(m− c)!
· 1

n · · · (n− c+ 1)
· (n−m) · · · (n− 2m+ c+ 1)

(n− c) · · · (n−m+ 1)

=
m!

(m− c)!
· 1

γn,c
· (n−m) · · · (n− 2m+ c+ 1)

(n− c) · · · (n−m+ 1)
.

Factorising the ratio in the end further,

(
n

m

)−1(
n−m

m− c

)
=

m!

(m− c)!
· 1

γn,c
·
m−c−1∏
l=0

(
1− m− c

n− c− l

)
.

Therefore, set

δn,m,c =

[
m−c−1∏
l=0

(
1− m− c

n− c− l

)]
− 1. (3.13)
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Then,

(
n

m

)−1(
n−m

m− c

)
=

m!

(m− c)!

1

γn,c
(1 + δn,m,c) ,

where lim
n→∞

δn,m,c =0, for each c ≤ m.

Therefore, applying the above expression to (3.9)

ρn(η) =
m∑
c=1

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η)−

m2

n
ζ1(η)

=
m2

n
δn,m,1ζ1(η) +

m∑
c=2

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η). (3.14)

For fixed η, visual inspection of (3.14), first suggests that the term corresponding to c = 1

will exhibit the slowest tendency towards zero, unless δn,m,1 = O(1/n). We can show that

δn,m,1 = O(1/n) is in fact true. To that end, from (3.13),

δn,m,1 =

(
1− m− 1

n− 1

)
· · ·
(
1− m− 1

n−m+ 1

)
− 1.

By Billingsley (1995, Lemma 1, p. 358), given any l ∈ N and z1,1, z2,1, . . . , z1,l, z2,l ∈ C with

|zj,k| ≤ 1,

|z1,1 · · · z1,l − z2,1 · · · z2,l| ≤
l∑

k=1

|z1,k − z2,k| .

Applying this with l = m−1, z1,j = 1−((m−1)/(n−j)) and z2,j = 1 for every j = 1, . . . ,m−1,

|δn,m,1| ≤
m−1∑
k=1

m− 1

n− k
≤ (m− 1)2

(
1 +

m− 1

n−m+ 1

)
· 1
n
. (3.15)

Revisiting (3.14),

ρn(η) =
m2

n
δn,m,1ζ1(η) +

m∑
c=2

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η)
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≤ m2

n
|δn,m,1| ζ1(η) +

m∑
c=2

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η),

so that

ρn(η) ≤
m2(m− 1)2 ·

(
1 + m−1

n−m+1

)
n2

ζ1(η)

+
m∑
c=2

1

γn,c
· (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η),

which is exactly (3.11).

4 Asymptotic comparison of U- and V-statistics

Theorem 4.1. If q ∈ [1,∞) and maxi∈Nm
n
E
[∥∥η (Zi(1), . . . , Zi(m)

)∥∥q] < ∞,

E [∥Un(η)− Vn(η)∥q]
1
q ≤ m(m− 1)

n
max
i∈Nm

n

E
[∥∥η (Zi(1), . . . , Zi(m)

)∥∥q] 1
q . (4.1)

Proof of Theorem 4.1. Apply Lemma 4.1:

E [∥Un(η)− Vn(η)∥q]
1
q ≤ 2 (nm − γn,m)

nm
max
i∈Nm

n

E
[∥∥η (Zi(1), . . . , Zi(m)

)∥∥q] 1
q .

By Lemma 4.2, nm−γn,m = (m(m−1)/2)nm−1 so that (2 (nm − γn,m)) /n
m = (m(m−1))/n.

Hence (4.1) follows.

Lemma 4.1. Let I be a non-empty finite set and {aι : ι ∈ I} be a subset of a normed space

with norm ∥ · ∥. Let I0 ⊆ I be a strict subset of I, i.e. |I \ I0| ≥ 1. Define

V =
1

|I|
∑
ι∈I

aι, U =
1

|I0|
∑
ι∈I0

aι, W =
1

|I| − |I0|
∑

ι∈I\I0

aι. (4.2)
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Then, the following hold

V − U =
|I| − |I0|

|I|
(W − U), (4.3)

∥V − U∥ ≤ 2
|I| − |I0|

|I|
max
ι∈I

∥aι∥ . (4.4)

Proof of Lemma 4.1. From (4.2), |I|V =
∑

ι∈I0 aι +
∑

ι∈I\I0 aι = |I0|U + (|I| − |I0|)W .

Subtract |I|U from both sides, so that |I|(V − U) = (|I| − |I0|) (W − U). Division by |I|

establishes (4.3). For (4.4), by (4.3) and the triangle inequality,

∥U − V ∥ =
|I| − |I0|

|I|
∥U −W∥ ≤ |I| − |I0|

|I|
(∥U∥+ ∥W∥)

≤ 2
|I| − |I0|

|I|
max{∥U∥, ∥W∥}.

Since U and W are arithmetic averages over subsets of I, we get max{∥U∥, ∥W∥} ≤

maxι∈I ∥aι∥ from repeated applications of the triangle inequality. This establishes (4.4).

Lemma 4.2. For n,m ∈ N, with n ≥ m, with γn,m as in (1.2),

nm − γn,m =
m(m− 1)

2
nm−1. (4.5)

Proof of Lemma 4.2. For m = 1, (4.5) follows from γn,1 = n by definition in (1.2). For

m = 2, by definition in (1.2), γn,2 = n(n− 1). Thus

n2 − γn,2 = n2 − n(n− 1) = n,

so that (4.5) follows for m = 2.

Now we verify (4.5) for m > 2. Note that

nm − γn,m =
∣∣NonInjn,m∣∣ ,
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where as in (1.1),

NonInjn,m = {i ∈ Nm
n : ∃j, k ∈ Nm, j ̸= k such that i(j) = i(k)} .

Now consider the task of picking an element from NonInjn,m. Recall that we are consid-

ering the cases m > 2. We can exhaust NonInjn,m by using the following steps:

1. Pick two indices j, k ∈ Nm such that j < k;

2. Select i(j) ∈ Nn and set i(k) = i(j);

3. Pick the restriction {i(l) : l ∈ Nm \ {j, k}} ∈ Nm−2
n arbitrarily.

There are m(m − 1)/2 ways to complete step 1. For each instance of step 1, there are n

ways to complete step 2. Finally, for each instance of steps 1 and 2, there are nm−2 ways to

complete step 3. Therefore,

n− γn,m =
∣∣NonInjn,m∣∣ = m(m− 1)

2
· nm−1.
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A Preliminaries on projections

Denote the set of random variables that are square-integrable against Pr by

L2 ≡ L2(Pr) =

{
X : E

[
|X|2

]
=

∫
|X|2dPr < ∞

}
. (A.1)

It is well known that L2 is a Hilbert space under the inner product ⟨X,Y ⟩ = E[X ·Y ]. That

is, the inner product space (L2, ⟨·, ·⟩) is a complete metric space under the induced normed

metric:

ρ2 (X, Y )2 := ∥X − Y ∥22 := ⟨X − Y,X − Y ⟩ = E
[
|X − Y |2

]
∀ X,Y ∈ L2. (A.2)

Let S ⊆ L2(Pr) and T ∈ L2. T∗ ∈ S is a projection of T onto S if and only if

T∗ ∈ S and E
[
(T − T∗)

2] ≤ E
[
(T − S)2

]
∀S ∈ S. (A.3)

A.1 Existence of projections onto closed and convex subsets

Theorem A.1 shows that a projection on S ⊂ L2 exists whenever S is closed and convex.

Theorem A.1. Let T ∈ L2 and let S ⊆ L2 be closed and convex. Then there exists T∗

satisfying (A.3). Furthermore, T∗ is almost surely unique, i.e. if T∗∗ also satisfies (A.3),

then Pr {T∗ ̸= T∗∗} = 0.

Proof of Theorem A.1. Let

d∗ := inf
S∈S

E
[
(S − T )2

]
.

Then for each n ∈ N, there necessarily exists Sn ∈ S such that

d∗ ≤ E
[
(Sn − T )2

]
≤ d∗ +

1

n
.
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Furthermore for any n,m ∈ N,

E
[
(Sn − Sm)

2] =E
[
(Sn − T )2

]
+ E

[
(Sm − T )2

]
− 2E [(Sn − T ) (Sm − T )] ,

4E

[(
Sn + Sm

2
− T

)2
]
=E

[
(Sn − T )2

]
+ E

[
(Sm − T )2

]
+ 2E [(Sn − T ) (Sm − T )] .

This implies

E
[
(Sn − Sm)

2] = 2E
[
(Sn − T )2

]
+ 2E

[
(Sm − T )2

]
− 4E

[(
Sn + Sm

2
− T

)2
]
.

Since S is convex, 1
2
(Sn + Sm) ∈ S and so, E

[{
1
2
(Sn + Sm)− T

}2] ≥ d∗. Using the upper

bounds in the definition of Sn and Sm, and the lower bound now established,

E
[
(Sn − Sm)

2] ≤ 2

(
d∗ +

1

n

)
+ 2

(
d∗ +

1

m

)
− 4d∗ = 2

(
1

n
+

1

m

)
.

Hence, {Sn} is Cauchy in S. Since L2 is complete and S is a closed subset of L2, S is also

necessarily complete. Thus, there is a T∗ ∈ S such that limn→∞ E
[
(Sn − T∗)

2] = 0. Then,

d∗ ≤E
[
(T∗ − T )2

]
= E

[
(Sn − T )2

]
+ E

[
(T∗ − Sn)

2]+ 2E [(Sn − T ) · (T∗ − Sn)]

≤E
[
(Sn − T )2

]
+ E

[
(T∗ − Sn)

2]+ 2E
[
(Sn − T )2

] 1
2 E
[
(T∗ − Sn)

2] 1
2 .

Hence,

d∗ ≤ E
[
(T∗ − T )2

]
≤ d∗ +

1

n
+ E

[
(T∗ − Sn)

2]+ 2

(
d∗ +

1

n

) 1
2

E
[
(T∗ − Sn)

2] 1
2 .

Since E
[
(T∗ − Sn)

2]→ 0, taking limits, E
[
(T∗ − T )2

]
= d∗ = infS∈S E

[
(S − T )2

]
.

Next suppose T∗∗ also satisfies (A.3). Then as before,

E
[
(T∗ − T∗∗)

2] = 2E
[
(T∗ − T )2

]
+ 2E

[
(T∗∗ − T )2

]
− 4E

[(
T∗ + T∗∗

2
− T

)2
]
.
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Since T∗ and T∗∗ both satisfy (A.3),

E
[
(T∗ − T∗∗)

2] = 4d∗ − 4E

[(
T∗ + T∗∗

2
− T

)2
]
.

Since S is convex, T∗+T∗∗
2

∈ S and so,

E

[(
T∗ + T∗∗

2
− T

)2
]
≥ d∗.

Hence,

0 ≤ E
[
(T∗ − T∗∗)

2] ≤ 4d∗ − 4d∗ = 0.

The above implies that Pr {T∗ ̸= T∗∗} = 0.

A.2 Projection onto linear subspaces and orthogonality

When the subset for projection is a linear subspace of L2, a useful equivalent characterization

of a projection is through an orthogonality condition.

Theorem A.2. Let T ∈ L2 and S be a linear subspace of L2. Then T∗ satisfies (A.3) if

and only if

T∗ ∈ S and E [S · (T − T∗)] = 0 ∀S ∈ S. (A.4)

Furthermore, T∗ satisfying (A.4) is almost surely unique. That is, if T∗∗ also satisfies (A.4),

then Pr {T∗ ̸= T∗∗} = 0.

Proof of Theorem A.2. Suppose T∗ satisfies (A.4). Then, for any S ∈ S,

E
[
(T − S)2

]
=E

[
(T − T∗)

2]+ 2E [(T − T∗) · (T∗ − S)] + E
[
(T∗ − S)2

]
=E

[
(T − T∗)

2]+ E
[
(T∗ − S)2

]
,

where the final equality follows from (A.4) since T∗ − S ∈ S by linearity of S. Therefore,

16



since E
[
(T∗ − S)2

]
≥ 0, T∗ satisfies (A.3).

Next, we prove the converse by proving its contrapositive. To that end, suppose that

(A.4) fails. That is, T∗ ̸∈ S or there exists S∗ ∈ S such that

E [S∗ · (T − T∗)] ̸= 0. (A.5)

If T∗ ̸∈ S, then it is immediate that (A.3) fails. Thus, suppose that T∗, S∗ ∈ S and (A.5)

holds. Note that (A.5) necessitates Pr {S∗ ̸= 0} > 0, i.e. S∗ cannot be almost surely zero.

Since S ⊆ L2, this also implies that 0 < E [S2
∗ ] < ∞. By linearity of S, T∗ + τS∗ ∈ S for

every τ ∈ R, and

E
[
(T − T∗ − τS∗)

2] = E
[
(T − T∗)

2]− 2τE [S∗ · (T − T∗)] + τ 2E
[
S2
∗
]
.

As a function of τ , the above is minimized at

τ∗ =
E [S∗ · (T − T∗)]

E [S2
∗ ]

̸= 0.

The associated minimum value is

E
[
(T − T∗ − τ∗S∗)

2] =E
[
(T − T∗)

2]− E [S∗ · (T − T∗)]
2

E [S2
∗ ]

< E
[
(T − T∗)

2] .
This means that (A.3) fails. By contrapositive, we have that if (A.3) holds, then (A.4) must

also hold.

Finally, to see that T∗ is almost surely unique, let T∗∗ also satisfy (A.4). Then,

E
[
(T∗ − T∗∗)

2] = E [(T∗ − T∗∗) · (T∗ − T )] + E [(T∗ − T∗∗) · (T − T∗∗)] = 0,

since by linearity of S, T∗ − T∗∗ ∈ S. The above implies that Pr {T∗ ̸= T∗∗} = 0.
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A.3 Second-moment distance between a random variable and its

projection

The following result provides a useful characterization of the second moment distance be-

tween a random variable and its projection onto a space that contains the constants.

Theorem A.3. Let T ∈ L2 and S be a linear subspace of L2 containing the constants (i.e.

non-stochastic random variables). Suppose the projection of T onto S exists and denote this

projection by T∗. Then,

E
[
(T − T∗)

2] = Var[T ]− Var [T∗] . (A.6)

Proof of Theorem A.3. By T∗ ∈ S and (A.4),

E [T∗ · (T − T∗)] = 0 ⇐⇒ E [T · T∗] = E
[
T 2
∗
]
. (A.7)

Similarly, since S contains the constants,

E [T − T∗] = 0 ⇐⇒ E[T ] = E [T∗] . (A.8)

Therefore, by (A.7) and (A.8),

Cov (T, T∗) = E [TT∗]− E[T ]E [T∗] = E
[
T 2
∗
]
− E [T∗]

2 .

Hence,

Cov (T, T∗) = Var [T∗] . (A.9)

Next, by (A.8), E [T − T∗] = 0 and so,

E
[
(T − T∗)

2] = Var [T − T∗] = Var[T ] + Var [T∗]− 2Cov (T, T∗) .
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Therefore by (A.9),

E
[
(T − T∗)

2] = Var[T ]− Var [T∗] , (A.10)

which is exactly (A.6).

A.4 Projection onto sum spaces

Suppose now that {Zj}nj=1 are independent random variables/vectors and let

S =

{
n∑

j=1

gj (Zj) : gj measurable and E
[
gj (Zj)

2] < ∞ for all j = 1, . . . , n

}
. (A.11)

Theorem A.4. Let {Zj}nj=1 be independent random variables. The projection of an arbitrary

random variable T ∈ L2 onto the class S in (A.11) is given by

T∗ =
n∑

j=1

E [T |Zj]− (n− 1)E[T ] = E[T ] +
n∑

j=1

{E [T |Zj]− E[T ]} .

Proof of Theorem A.4. We proceed by verifying the orthogonality condition (A.4). Let j ∈

{1, . . . , n} be given. If gj(·) is a measurable function with E
[
gj (Zj)

2] < ∞, then certainly

gj (Zj) ∈ S. Furthermore,

E [gj (Zj) · (T − T∗)] =E [gj (Zj) · {T − E[T ]− E [T |Zj] + E[T ]}]

−
n∑

l=1
l ̸=j

E [gj (Zj) · {E [T |Zl]− E[T ]}]

=E [gj (Zj) · {T − E [T |Zj]}]

[by Zj ⊥⊥ Zl] −
n∑

l=1
i̸=j

E [gj (Zj)] · E [{E [T |Zl]− E[T ]}]

= 0.

In the last line above, the second term is zero since E [E [T |Zl]] = E[T ] for every l and the
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first term is zero by definition of E [T |Zj]. Now, take a sum of such functions gj (Zj) over

j = 1, . . . , n:

E

[(
n∑

j=1

gj (Zj)

)
· (T − T∗)

]
=

n∑
j=1

E [gj (Zj) · (T − T∗)] =
n∑

j=1

0 = 0.

B Exercises in counting

Theorem B.1. Let m, p, n be natural numbers and c be a non-negative integer such that

c ≤ min{m, p} and max{m, p} ≤ n. Let a = {ai}mi=1 , b = {bi}pi=1 ⊆ {1, . . . , n} where i 7→ ai

and i 7→ bi are both strictly increasing. There are
(
n
m

)
·
(
m
c

)
·
(
n−m
p−c

)
ways to select a and b

such that they have exactly c elements in common.

Proof of Theorem B.1. Let C denote the number of ways to pick a and b with exactly c

common elements. We can select a and b with exactly c common elements by first selecting

a, then selecting c elements of a that will be common with b, and finally selecting b to ensure

only those c elements are common to a and b. Therefore,

C =# of ways to select a

×# of ways to select c elements of a in common with b

×# of ways to select remaining elements of b

Clearly,

# of ways to select a =

(
n

m

)
,

# of ways to select c elements of a =

(
m

c

)
.

Then, consider the last problem of selecting the remaining elements of b that are not common
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with a. Since the c common elements have already been selected, there are p− c remaining

elements of b requiring selection. Since we have fulfilled the “exactly c elements in common”

constraint, this selection must be from {1, . . . , n}\a, which has cardinality n−m. Therefore,

upon fixing a and the c common elements,

# of ways to select remaining elements of b =
(
n−m

p− c

)
.
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