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1 Introduction

In this note, we explore inference techniques for kernel estimators of density and conditional

mean regression functions. We consider pointwise inference, uniform inference results are

left for the future, either in a different document or future versions of the present document.

The key guiding principle of the results presented in the present note will be as follows.

There are standard Gaussian inference results for kernel estimators of density and regression

functions. In these, the standard error estimators require the use of the estimated density

and regression functions. However, we can formulate more “intuitive” standard error esti-

mators that utilize the fact that kernel estimators are sample averages. These also work in

that they are consistent in the appropriate sense and ensure that resulting t-statistics are

asymptotically standard normal.

2 Density Estimation

Assumption 2.1. X,X1, . . . , Xn are iid random Rd-vectors all with Lebesgue density f .

Assumption 2.2. K : Rd → R is a measurable function such that
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(i)
∫
|K(u)|p du < ∞ for each p ∈ {1, 2, 4}.

(ii)
∫
K(u) du = 1

(iii) lim∥u∥→∞ ∥u∥dK(u) = 0.

Assumption 2.3. {hn} is a real sequence such that hn > 0 for every n ∈ N, limn→∞ hn = 0,

and limn→∞ 1/
(
nhd

n

)
= 0.

Remark 2.1. It can be shown that if K is continuous, then Assumption 2.2 (i) for p = 1

and (iii) imply that K is bounded. Then Assumption 2.2 (i) for p ∈ (1,∞) are immediately

implied since |K(u)|p ≤ (supv∈Rd |K(v)|)p−1 |K(u)| for every u ∈ Rd. For our purposes, it

will be sufficient to assume Assumption 2.2 (i) for p ∈ {1, 2, 4}.

For K satisfying Assumption 2.2, define

Kh(u) :=
1

hd
K
(u
h

)
. (2.1)

The kernel density estimator and its mean are

f̂n,h(x) =
1

n

n∑
i=1

Kh (Xi − x) and fh(x) = E [Kh(X − x)] =

∫
f(x+ u)Kh(u) du. (2.2)

Note that the final equality in (2.2) follows from the usual change of variables formula. The

following is a usual statement of consistency and asymptotic normality for f̂n,hn(x).

Theorem 2.1. Let the probability density f in Assumption 2.1 be continuous at x ∈ Rd and

satisfy f(x) > 0, let K be a function satisfying Assumption 2.2, and let the sequence {hn}

satisfy Assumption 2.3. Then as n → ∞,

f̂n,hn(x)
p→ f(x) and

√
nhd

n

(
f̂n,hn(x)− fhn(x)

)
⇝ N

(
0, f(x)

∫
K(u)2 du

)
. (2.3)

Proof of Theorem 2.1. See Section 2.1.1.
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In this note, we will avoid talking about asymptotic normality of f̂n,hn − f(x) since the

bias term fhn(x) − f(x) is typically non-zero and requires slightly delicate handling after

scaling by
√

nhd
n. Instead, we focus on the centered quantity f̂n,hn − fhn(x) to focus only on

asymptotic normality and standard error estimation. To that end, the typical prescription

for inference is based on an application of Slutsky’s Theorem and direct use of (2.3): under

the conditions of Theorem 2.1,

t̃n =

√
nhd

n

(
f̂n,hn(x)− fhn(x)

)
√

Ṽn,hn(x)
⇝ N(0, 1),

where Ṽn,hn(x) = f̂n,hn(x)

∫
K(u)2 du.

(2.4)

In this note, we follow an alternative route. In particular, f̂n,h is a sample average and

so, we might suspect that usual t-statistic is asymptotically standard normal. A key object

in our derivations will be the centered kernel sum

Sn,h(x) =
n∑

i=1

{
K

(
Xi − x

h

)
− E

[
K

(
X − x

h

)]}
. (2.5)

Note that

f̂n,h(x)− fh(x) =
Sn,h(x)

nhd
. (2.6)

Clearly since Xi
iid∼ X (Assumption 2.1),

E [Sn,h(x)] = 0 and Var [Sn,h(x)] = nΣh(x), (2.7)

where by (A.7) in Theorem A.4,

Σh(x) :=Var

[
K

(
X − x

h

)]
= E

[
K

(
X − x

h

)2
]
− E

[
K

(
X − x

h

)]2
=hd

∫
f(x+ uh)K(u)2 du−

(
hd

∫
f(x+ uh)K(u) du

)2

.

(2.8)
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The following result shows that Sn,hn(x)/
√

nΣhn(x) is asymptotically standard normal. The

key technical tool is Liapunov’s Central Limit Theorem (see for example Billingsley (1995,

Theorem 27.3, p. 362) or Pollard (1984, Theorem 18 in Section 4 of Chapter III, p. 51)).

Theorem 2.2. Let the probability density f in Assumption 2.1 be continuous at x ∈ Rd and

satisfy f(x) > 0, let K be a function satisfying Assumption 2.2, and let the sequence {hn}

satisfy Assumption 2.3. Then as n → ∞,

Sn,hn(x)√
nΣhn(x)

⇝ N(0, 1). (2.9)

Proof of Theorem 2.2. See Section 2.1.2.

Define

Vh(x) = Var [Kh(X − x)] =E
[
Kh(X − x)2

]
− E [Kh(X − x)]2

=E
[
Kh(X − x)2

]
− fh(x)

2.

Note that

Vh(x) =
1

h2d
Σh(x).

Since f̂n,hn is a sample average of the Kh (Xi − x)’s and Xi
iid∼ X, it follows that

Var
[
f̂nh(x)

]
= Vh(x)/n.

Furthermore,
f̂n,hn(x)− fhn(x)√

Vhn(x)/n
=

Sn,hn(x)√
nΣhn(x)

⇝ N(0, 1), (2.10)

by (2.9) in Theorem 2.2.

For a feasible implementation of (2.10), we require a consistent estimator (in a sense to

be defined later on) of Vh(x). To that end, a reasonable estimator of Vh(x) is the sample
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variance of the Kh (Xi − x)’s:

V̂n,h(x) =
1

n

n∑
i=1

Kh (Xi − x)2 −

(
1

n

n∑
i=1

Kh (Xi − x)

)2

=
1

n

n∑
i=1

Kh (Xi − x)2 − f̂n,h(x)
2.

(2.11)

Theorem 2.3 shows that using V̂n,h(x) in standardization achieves asymptotic standard nor-

mality for the resulting t-statistic.

Theorem 2.3. Let the probability density f in Assumption 2.1 be continuous at x ∈ Rd and

satisfy f(x) > 0, let K be a function satisfying Assumption 2.2, and let the sequence {hn}

satisfy Assumption 2.3. Then as n → ∞,

V̂n,hn(x)

Vhn(x)

p→ 1 and so
f̂n,hn(x)− fhn(x)√

V̂n,hn(x)/n
⇝ N(0, 1). (2.12)

Proof of Theorem 2.3. See Section 2.1.3.

2.1 Proofs

2.1.1 Proof of Theorem 2.1

The consistency part of (2.3) follows from the asymptotic normality part of (2.3) combined

with Theorem A.4. To see this, note that

f̂n,hn(x)− f(x) = f̂n,hn(x)− fhn(x) + fhn(x)− f(x),

and by Equation (A.7) in Theorem A.4,

lim
n→∞

fhn(x) = lim
n→∞

∫
f (x+ uhn)K(u) du = f(x)

∫
K(u) du = f(x),
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where the last equality follows from Assumption 2.2 (ii). Hence, we are done if we can show

f̂n,hn(x) − fhn(x)
p→ 0. But the asymptotic normality part of (2.3) implies that f̂n,hn(x) −

fhn(x) = Op

(
1/
√

nhd
n

)
= op(1) since by Assumption 2.3, 1/

(
nhd

n

)
→ 0 as n → ∞.

Hence, it remains to show the asymptotic normality part of (2.3). We shall derive the

latter as a corollary of Theorem 2.2. By (2.9) in Theorem 2.2

Zn,hn(x) :=
Sn,hn(x)√
nΣhn(x)

⇝ N(0, 1). (2.13)

The definition of Σh(x) is given in (2.8). By (2.6) and (2.13)

f̂n,h(x)− fh(x) =
Sn,h(x)

nhd
=

√
nΣh(x)

nhd
· Zn,h(x) =

√
h−dΣh(x)√

nhd
· Zn,h(x),

and so,
√
nhd

(
f̂n,h(x)− fh(x)

)
=
√

h−dΣh(x) · Zn,h(x). (2.14)

Now by (2.8),

h−dΣh(x) =h−d

(
hd

∫
f(x+ uh)K(u)2 du−

(
hd

∫
f(x+ uh)K(u) du

)2
)

=

∫
f(x+ uh)K(u)2 du− hd

(∫
f(x+ uh)K(u) du

)2

.

By Theorem A.4,

lim
n→∞

h−d
n Σhn(x) = f(x)

∫
K(u)2 du.

Combine the above display with (2.13), (2.14), and Slutsky’s Theorem to get the asymptotic

normality part of (2.3).
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2.1.2 Proof of Theorem 2.2

We use Liapunov’s Central Limit Theorem to prove (2.9). To that end, define

bn,h(x)
4 =

n∑
i=1

E

[∣∣∣∣K (Xi − x

h

)
− E

[
K

(
X − x

h

)]∣∣∣∣4
]

=n · E

[∣∣∣∣K (X − x

h

)
− E

[
K

(
X − x

h

)]∣∣∣∣4
]
.

By Liapunov’s Central Limit Theorem,

If lim
n→∞

bn,hn(x)
4

(nΣhn(x))
2 = 0, then

Sn,hn(x)√
nΣhn(x)

⇝ N(0, 1). (2.15)

By the Cr inequality (in particular (|a|+ |b|)4 ≤ 8 (|a|4 + |b|4)),

bn,h(x)
4 ≤ 8n ·

(
E

[
K

(
X − x

h

)4
]
+

∣∣∣∣E [K (X − x

h

)]∣∣∣∣4
)
.

And so,

bn,h(x)
4

(nΣh(x))
2 ≤

8
(
E
[∣∣K (X−x

h

)∣∣4]+ ∣∣E [K (X−x
h

)]∣∣4)
n
(
E
[
K
(
X−x
h

)2]− E
[
K
(
X−x
h

)]2) . (2.16)

For any p ∈ {1, 2, 4},

E

[
K

(
X − x

h

)p]
=

∫
f(ξ)

∣∣∣∣K (ξ − x

h

)∣∣∣∣p dξ = hd

∫
f(x+ uh)K(u)p du. (2.17)

Plug (2.16) into (2.17) to get

bn,h(x)
4

(nΣh(x))
2 ≤

8
(
hd
∫
f(x+ uh)K(u)4 du+

(
hd
∫
f(x+ uh)K(u) du

)4)
n
(
hd
∫
f(x+ uh)K(u)2 du−

(
hd
∫
f(x+ uh)K(u) du

)2)2 .
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Then, since
∫
f(x+ uh)K(u) du = fh(x),

bn,h(x)
4

(nΣh(x))
2 ≤

8
(∫

f(x+ uh)K(u)4 du+ h3dfh(x)
4
)

nhd
(∫

f(x+ uh)K(u)2 du− hdfh(x)2
)2 . (2.18)

By Theorem A.4, since limn→∞ hn = 0,

lim
n→∞

∫
f (x+ uhn)K(u)p du = f(x)

∫
K(u) du .

Furthermore, Assumption 2.2 (ii) implies that
∫
K(u)p du > 0 for p ∈ {2, 4}. Combine this

with the above displayed expression and (2.18) to get

bn,hn(x)
4

(nΣhn(x))
2 ≤ 8

nhn

·
f(x)

∫
K(u)4 du+ o(1) + h3d

n (f(x) + o(1))4(
f(x)

∫
K(u)2 du+ o(1)− hd

n(f(x) + o(1))2
)2 → 0,

since limn→∞ max
{
hn, 1/

(
nhd

n

)}
= 0. The claim in (2.9) now follows by (2.15).

2.1.3 Proof of Theorem 2.3

The asymptotic standard normality result in (2.12) follows from (2.10), the variance consis-

tency result in (2.12) and Slutsky’s Theorem:

f̂n,hn(x)− fhn(x)√
V̂n,hn(x)/n

=

√
Vhn(x)

V̂n,hn(x)
· f̂n,hn(x)− fhn(x)√

Vhn(x)/n
⇝ N(0, 1).

Hence, we focus on showing the variance consistency result in (2.12), which is equivalent to

showing
V̂n,hn(x)− Vhn(x)

Vhn(x)

p→ 0 ⇐⇒ V̂n,hn(x)− Vhn(x) = op (Vhn(x)) . (2.19)

To that end,

V̂n,h(x)− Vh(x) = fh(x)
2 − f̂n,h(x)

2 +
1

n

n∑
i=1

{
Kh (Xi − x)2 − E

[
Kh(X − x)2

]}
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=
(
fh(x) + f̂n,h(x)

)(
fh(x)− f̂n,h(x)

)
+

1

n

n∑
i=1

{
Kh (Xi − x)2 − E

[
Kh(X − x)2

]}
=2fh(x)

(
fh(x)− f̂n,h(x)

)
−
(
fh(x)− f̂n,h(x)

)2
+

1

n

n∑
i=1

{
Kh (Xi − x)2 − E

[
Kh(X − x)2

]}
.

Hence,

V̂n,h(x)− Vh(x) =Rn,h(x) + Tn,h(x)

where Rn,h(x) = 2fh(x)
(
fh(x)− f̂n,h(x)

)
−
(
fh(x)− f̂n,h(x)

)2
,

and Tn,h(x) =
1

n

n∑
i=1

{
Kh (Xi − x)2 − E

[
Kh(X − x)2

]}
.

(2.20)

Therefore showing (2.19) is equivalent to showing

Rn,hn(x) = op (Vhn(x)) and Tn,hn(x) = op (Vhn(x)) . (2.21)

By (2.10),

f̂n,hn(x)− fhn(x) = Op

(√
Vhn(x)

n

)
= Op

(
Vhn(x)√
nVhn(x)

)
,

and so,

f̂n,hn(x)− fhn(x) =
1√

nVhn(x)
·Op (Vhn(x)) . (2.22)

Since

Vh(x) =
1

hd

(∫
f(x+ uh)K(u)2 du− hd

(∫
f(x+ uh)K(u) du

)2
)
, (2.23)
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by Theorem A.4 it follows that

1

nVhn(x)
=

hd
n

n
· 1

f(x)
∫
K(u)2 du+ o(1)

.

Combine with this (2.22) to conclude that

f̂n,hn − fhn(x) = op (Vhn(x)) and so Rn,hn(x) = op (Vhn(x)) . (2.24)

For the second part of (2.21), we will use Chebyshev’s inequality. Note that (2.23)

Tn,hn(x) =Op

(√
E [Tn,hn(x)

2]

)
= Op (Vh(x))

√
E [Tn,hn(x)

2]

Vh(x)

=Op (Vhn(x))
hd
n

√
E [Tn,hn(x)

2](∫
f (x+ uhn)K(u)2 du− hd

n

(∫
f (x+ uhn)K(u) du

)2) ,
and so, by Theorem A.4

Tn,hn(x) = Op (Vhn(x))

√
h2d
n · E [Tn,hn(x)

2]

f(x)
∫
K(u)2 du+ o(1)

(2.25)

Now, since Kh (Xi − x) are iid,

E
[
Tn,h(x)

2
]
=E

( 1

n

n∑
i=1

{
Kh (Xi − x)2 − E

[
Kh(X − x)2

]})2


=
E
[(
Kh (X − x)2 − E [Kh(X − x)2]

)2]
n

=
E
[
Kh (X − x)4

]
− E [Kh(X − x)2]

2

n

=
1

h3d

∫
f(x+ uh)K(u)4 du−

(
1
hd

∫
f(x+ uh)K(u)2 du

)2
n

.
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Therefore,

h2dE
[
Tn,h(x)

2
]
=

∫
f(x+ uh)K(u)4 du− hd

(∫
f(x+ uh)K(u)2 du

)2
nhd

,

and so by Theorem A.4,

h2d
n E

[
Tn,hn(x)

2
]
=

f(x)
∫
K(u)4 du+ o(1)

nhd
n

. (2.26)

Combine (2.26) with (2.25) to see that

Tn,hn(x) =Op (Vhn(x))

√
f(x)

∫
K(u)4 du+ o(1)

f(x)
∫
K(u)2 du+ o(1)

· 1

nhd
n

,

and so Tn,hn(x) = op (Vhn(x)) .

(2.27)

Now, (2.21) follows from (2.24) and (2.27).
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A Approximation Results for Kernel Estimators

Here, we consider approximation by convolution. The exposition here is mainly based on

Pagan and Ullah (1999, pp. 362–365).1 I should note that Pagan and Ullah (1999) borrow

from Parzen (1962) who in turn borrows from Bochner (1955).

Assumption A.1. {κh : h ∈ (0,∞)} is a family of functions mapping Rd to R satisfying

the following.

(i) For each h ∈ (0,∞), κh is integrable with
∫
|κh(u)| du =: κh < ∞.

(ii) There is a h∗ ∈ (0,∞) and κ ∈ (0,∞) such that for every h ∈ (0, h∗], κh ≤ κ.

(iii) For each δ ∈ (0,∞), limh→0

∫
∥u∥≥δ

|κh(u)| du = 0.

(iv) For each h ∈ (0,∞),
∫
κh(u) du = κh and limh→0 κh = κ ∈ R.

Remark A.1. If the family {κh} satisfies κh ≥ 0 almost everywhere for each h ∈ (0,∞),

then Assumption A.1 (i) and (iv) imply (ii), since in this case κh = κh for every h ∈ (0,∞)

and we can choose h∗ to satisfy |κh − κ| ≤ 1 for every h ∈ (0, h∗]. Then set κ = |κ|+ 1.

Lemma A.1. Let κ : Rd → R be an integrable function. Define κh(u) := h−dκ(u/h). Then

{κh} satisfies Assumption A.1.

Proof of Lemma A.1. By the change of variables v = u/h,

κh =

∫
κh(u) du =

∫
h−dκ(u/h) du =

∫
κ(v) dv ∀h ∈ (0,∞),

κh =

∫
|κh(u)| du =

∫
h−d|κ(u/h)| du =

∫
|κ(v)| dv =: κ,

1. In my PDF copy of Pagan and Ullah (1999), this corresponds to pp. 381–384 (in PDF).
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∫
∥u∥≥δ

|κh(u)| du =

∫
∥u∥≥δ

h−d |κ(u/h)| du =

∫
∥v∥≥δ/h

|κ(v)| dv → 0

since {v : ∥v∥ ≥ δ/h} ↘ ∅, as h → 0.

For a measurable function g : Rd → R, consider the convolution based approximant

gh(x) := Th[g](x) :=

∫
g(x+ u)κh(u) du

for a family {κh} satisfying Assumption A.1.
(A.1)

Assume henceforth that for the point x in question, the integral in (A.1) exists and is finite.

The natural question of primitive assumptions for this existence and finiteness. We first

provide a pointwise error bound for gh − g.

Theorem A.1. Let {κh} satisfy Assumption A.1 (i)-(iii). Let h, δ ∈ (0,∞), x ∈ Rd, and

let g : Rd → R be a measurable function. Assume the integral in (A.1) exists and is finite.

Then

|gh(x)− g(x) · κh| ≤

{
sup
∥u∥<δ

|g(x+ u)− g(x)|

}
· κ+

∫
∥u∥≥δ

|g(x+ u)| · |κh(u)| du

+ |g(x)|
∫
∥u∥≥δ

|κh(u)| du.
(A.2)

Proof of Theorem A.1.

|gh(x)− g(x) · κh| =
∣∣∣∣∫ (g(x+ u)− g(x))κh(u) du

∣∣∣∣ ≤ ∫ |g(x+ u)− g(x)| |κh(u)| du.

Split the integral on the right:

|gh(x)− g(x) · κh| ≤
∫
∥u∥<δ

|g(x+ u)− g(x)| |κh(u)| du

+

∫
∥u∥≥δ

|g(x+ u)− g(x)| |κh(u)| du
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≤

[
sup
∥u∥<δ

|g(x+ u)− g(x)|

]∫
|κh(u)| du

+

∫
∥u∥≥δ

|g(x+ u)| |κh(u)| du+ |g(x)|
∫
∥u∥≥δ

|κh(u)| du.

In the last inequality above, bound the integral in the first term by κ to get (A.2).

Lemma A.2. Let {κh} satisfy Assumption A.1 (i)-(iii). Let x ∈ Rd, and let g : Rd → R

be a measurable function that is continuous at x. Assume the integral in (A.1) exists and is

finite for h > 0 sufficiently small.

If ∀δ > 0, lim
h→0

∫
∥u∥≥δ

|g(x+ u)| |κh(u)| du = 0, then

lim
h→∞

(gh(x)− g(x) · κh) = 0.

(A.3)

Furthermore if {κh} also satisfies satisfies Assumption A.1 (iv) then the premise in (A.3)

also implies

lim
h→∞

gh(x) = g(x)κ. (A.4)

Proof of Lemma A.2. Under Assumption A.1 (iv), (A.4) is an immediate consequence of

(A.3). So we prove (A.3). Since g is continuous at x, the first term in (A.2) can be controlled

by choice of δ sufficiently small. For any choice of δ, the second term in (A.2) is controlled

by choice of h sufficiently small by (A.3). For any choice of δ, the third term in (A.2) is

controlled by choice of h sufficiently small by Assumption A.1 (iii).

We therefore need some way(s) to show (A.3) to deal with the second term in (A.2). We

present two ways to do this.

Theorem A.2. Let {κh} satisfy Assumption A.1 (i)-(iii). Let x ∈ Rd, and g : Rd → R be a

bounded and measurable function that is continuous at x. Then the integral in (A.1) exists

and is finite and furthermore, limh→0 (gh(x)− g(x)κh) = 0. If in addition, {κh} satisfies

Assumption A.1 (iv), then limh→0 gh(x) = g(x)κ
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Proof of Theorem A.2. Existence and finiteness of the integral in (A.1) are immediate con-

sequences of the hypothesis of g being bounded. Furthermore by this hypothesis, given any

δ > 0

∫
∥u∥≥δ

|g(x+ u)| |κh(u)| du ≤ sup
y∈Rd

|g(y)|
∫
∥u∥≥δ

|κh(u)| du → 0 as h → 0.

Both limiting claims in Theorem A.2 now follow from (A.3) in Lemma A.2.

Assumption A.2. The family {κh} in Assumption A.1 also satisfies the following condition:

∀δ > 0, lim
h→0

sup
u∈Rd:∥u∥≥δ

∥u∥dκh(u) = 0. (A.5)

Lemma A.3. Consider the function κ and the associated family {κh} in Lemma A.1.

If lim
∥y∥→∞

∥y∥dκ(y) = 0, then {κh} satisfies Assumption A.2. (A.6)

Proof of Lemma A.3. Note that sup∥u∥≥δ ∥u∥dκh(u) = sup∥u∥≥δ ∥u/h∥dκ(u/h). Given any

δ > 0, the premise in (A.6) ensures that the right hand side can be made arbitrarily small

when h → 0. Thus (A.5) is satisfied.

Theorem A.3. Suppose the family {κh} satisfies Assumption A.1 (i)-(iii) and Assump-

tion A.2. Let x ∈ Rd, and let g : Rd → R be an integrable function that is continuous at

x. Then for h > 0 sufficiently small, the integral in (A.1) exists and is finite. In addi-

tion, limh→0 (gh(x)− g(x)κh) = 0. Furthermore, if {κh} satisfies Assumption A.1 (iv) then

limh→0 gh(x) = g(x)κ.

Proof of Theorem A.3. For existence and finiteness of the integral in (A.1), first note that

for any δ > 0,

|g(x+ u)| |κh(u)| ≤ |g(x+ u)| |κh(u)| · 1 {∥u∥ < δ}+ |g(x+ u)| |κh(u)| · 1 {∥u∥ ≥ δ} .
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Take any ε ∈ (0,∞) and choose δ := δε,x ∈ (0,∞) to ensure that |g(x + u) − g(x)| < ε for

∥u∥ < δ. Then, |g(x + u)| < |g(x)| + ε and combining this with the bound in the above

display,

|g(x+ u)| |κh(u)| ≤ (|g(x)|+ ε) |κh(u)| · 1 {∥u∥ < δ}+ |g(x+ u)| |κh(u)| · 1 {∥u∥ ≥ δ}

≤ (|g(x)|+ ε) |κh(u)| · 1 {∥u∥ < δ}

+
|g(x+ u)|

∥u∥d
∥u∥d |κh(u)| · 1 {∥u∥ ≥ δ}

≤ (|g(x)|+ ε) |κh(u)| · 1 {∥u∥ < δ}

+
|g(x+ u)|

δd
∥u∥d |κh(u)| · 1 {∥u∥ ≥ δ}

≤ (|g(x)|+ ε) |κh(u)| · 1 {∥u∥ < δ}

+
1

δd

[
sup

y∈Rd:∥y∥≥δ

∥y∥d |κh(y)|

]
· |g(x+ u)|1 {∥u∥ ≥ δ} .

The supremum in the above display exists and is finite for h sufficiently small by (A.5). We

know that |κh(u)| has a finite integral by Assumption A.1 (i). Therefore, the a sufficient

condition for the existence and finiteness of the integral in (A.1) is integrability of |g(x+u)|

since then |g(x+u)|1{∥u∥ ≥ δ} would be integrable. To that end, note that
∫
|g(x+u)| du =∫

|g(v)| dv < ∞ by the change of variables v = x+ u.

To prove the limit claims, we show (A.3) in Lemma A.2. Given any δ > 0,

∫
∥u∥≥δ

|g(x+ u)| |κh(u)| du =

∫
∥u∥≥δ

|g(x+ u)|
∥u∥d

· ∥u∥d · |κh(u)| du

=

[
sup

y∈Rd:∥y∥≥δ

∥y∥d · |κh(y)|

]
·
∫
∥u∥≥δ

|g(x+ u)|
∥u∥d

du

≤ 1

δd

[
sup

y∈Rd:∥y∥≥δ

∥y∥d · |κh(y)|

]
·
∫
∥u∥≥δ

|g(x+ u)| du.

In addition, ∫
∥u∥≥δ

|g(x+ u)| du =

∫
∥x−v∥≥δ

|g(v)| dv ≤
∫

|g(v)| dv.
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Combining both bounds,

∫
∥u∥≥δ

|g(x+ u)| |κh(u)| du ≤ 1

δd

[
sup

y∈Rd:∥y∥≥δ

∥y∥d · |κh(y)|

]
·
∫

|g(v)| dv.

Given any δ > 0, the right hand side of the above display tends to 0 as h → 0 by (A.5).

Both limiting claims in Theorem A.3 now follow from (A.3) in Lemma A.2.

Theorem A.4. Let κ : Rd → R be an integrable function with lim∥y∥→∞ ∥y∥dκ(y) = 0. Let

x ∈ Rd, and let g : Rd → R be an integrable function that is continuous at x. Then

lim
h→0

∫
g(x+ vh)κ(v) dv = lim

h→0

1

hd

∫
g(x+ u)κ(u/h) du = g(x)

∫
κ(u) du. (A.7)

Proof of Theorem A.4. Let κh(u) := h−dκ(u/h). The first equality in (A.7) follows from

the change of variables v = u/h. So we prove the second equality. By Lemma A.1 and

Lemma A.3, {κh} satisfies Assumption A.1 and Assumption A.2. By the change of variables

v = u/h, κh = h−d
∫
κ(u/h) du =

∫
κ(v) dv for every h ∈ (0,∞). Hence, limh→0 κh = κ :=∫

κ(v) dv is trivially true. Then (A.7) follows from Theorem A.3.
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