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1 Introduction

Let n ∈ N, (Ω,A ,Pr) be an underlying probability space and (X ,X ) be a measurable space. Let

Q be a signed measure on (X ,X ), and define

Qg :=

∫
g(x)Q(dx) if g ∈ L1(Q),

and ∥Q∥F := sup
f∈F

|Qf | if F ⊆ L1(Q).

Let X1, . . . , Xn be independent X -valued random elements defined on (Ω,A ,Pr) and denote the

Pr-law of Xi by Pi. Define the measures:

P(A) ≡ Pn(A) :=
1

n

n∑
i=1

δ{Xi}(A) =
1

n

n∑
i=1

1 {Xi ∈ A}

and P (A) ≡ Pn(A) :=
1

n

n∑
i=1

Pi(A).

For F ⊆ L1(P ), the empirical process is the map f 7→
(
P− P

)
[f ] := 1

n

∑n
i=1 (f (Xi)− Pif).

Our main goal here is to provide upper bounds for the tail outer probability Pr∗
{∥∥P− P

∥∥
F > y

}
as a function of y, n and F . Dependence on F can appear in two ways. The probability bounds

can depend on the supremum second moment of F :

κ2(Q,F) := sup
f∈F

√
Q [f2] for a positive measure Q.
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Furthermore, the bounds will depend on the complexity of F ; as in the rest of the empirical process

literature, we use covering numbers under Lp norms, see Definition 1.1 below. Throughout, we will

consider the case where functions in F are uniformly bounded in magnitude by 1.

Definition 1.1 (Lp(Q)-covering numbers). Let Q be a positive measure on (X ,X ) and denote

∥f∥p,Q =


(Q [|f |p])

1
p if 1 ≤ p < ∞,

inf{t > 0 : |f | ≤ t Q-a.e.} if p = ∞,

Lp(Q) = {f measurable such that ∥f∥p,Q < ∞} .

For F ⊆ Lp(Q) and ε > 0, define

N (ε,Lp(Q),F) := min

{
k ∈ N : ∃f1, . . . , fk ∈ F s.t. min

1≤j≤k
(Q [|f − fj |p])

1
p < ε ∀f ∈ F

}
.

Upon characterizing Pr∗
{
∥P− P∥F > y

}
, a second goal is then to explore how these probability

bounds can then be used to derive rates of convergence. A tertiary aim will be to characterize how

and when the chaining method offers an improvement over more crude methods using only covering

numbers, for both probability inequalities and convergence rate results.

2 Preliminary probability inequalities

Our first main result is the following bound.

Theorem 2.1. Let F satisfy supf∈F ,y∈X |f(y)| ≤ 1 and let x, t > 0 satisfy

x ≥ 1√
8n

sup
f∈F

√√√√ 1

n

n∑
i=1

Var [f (Xi)] and t ≥ κ2
(
P ,F

)
.

Then

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ min {1,E [ϕ (x, t;P,F)]} , where

ϕ (x, t;P,F) = 8 exp

(
− nx2

128t2

)
N (x,L1(P),F) + 16N (t,L2(P),F) exp

(
−nt2

)
.

(2.1)

In (2.1), the trivial upper bound of one comes from the fact that Pr∗ is an outer probabil-
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ity. We prove the bound due to the function ϕ in Theorem 2.1 as follows. First, we bound

Pr∗
{∥∥P− P

∥∥
F > y

}
by a tail outer probability for a symmetrized empirical process. Then, we

bound the outer probability “conditional” on symmetrization variables by an squared-exponential

decay. This is the first summand in ϕ in (2.1). The squared-exponential decay function in the sec-

ond step depends on the largest empirical second moment κ2(P,F). The second summand entering

ϕ in (2.1) results from a bound on deviation probabilities for κ2(P,F)/κ2(P ,F).

The symmetrized empirical process is

P◦f ≡ P◦
nf :=

1

n

n∑
i=1

Uif (Xi) , (2.2)

where U1, . . . , Un
iid∼ Rademacher with U := (U1, . . . , Un) independent to X := (X1, . . . , Xn).

Remark 2.1. For random elements V1 and V2 and an arbitrary (not necessarily measurable) map

T (V1, V2), PrV1,∗ [T (V1, V2)] and Pr∗V1
[T (V1, V2)] are the inner and outer probabilities respectively

over V1, taking V2 as fixed. Analogous notation applies to inner and outer expectations.

Lemma 2.1. For y ≥
√

8
n · supf∈F

√
1
n

∑n
i=1Var [f (Xi)],

Pr∗
{∥∥P− P

∥∥
F > y

}
≤ 4Pr∗

{
∥P◦∥F >

y

4

}
. (2.3)

Proof of Lemma 2.1. Lemma 2.1 is an application of Lemma B.3, which is a slightly generalized

variant of Lemma 2.3.7 in van der Vaart and Wellner (2023, p. 176). For details of the application

here, see Section A.1.

Lemma 2.2. Suppose F satisfies κ22 (P,F) < ∞ almost surely (e.g. F has an envelope in L2(P )).

For t > 0,

Pr∗U {∥P◦∥F > t} ≤ min

{
1, 2 exp

(
− nt2

8κ22(P,F)

)
N (t/2,L1(P),F)

}
. (2.4)

Proof of Lemma 2.2. See Section A.2.
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Lemma 2.3. Let F satisfy supf∈F ,x∈X |f(x)| ≤ 1. For t > 0 such that t ≥ κ2
(
P ,F

)
,

Pr∗

{
sup
f∈F

√
P [f2] > 8t

}
≤ E

[
min

{
1, 4N (t,L2(P),F) exp

(
−nt2

)}]
. (2.5)

Proof of Lemma 2.3. See Section A.3

We can now proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. By (2.3) in Lemma 2.1, for x ≥ 1√
8n

supf∈F

√
1
n

∑n
i=1Var [f (Xi)] and t > 0,

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ 4Pr∗ {∥P◦∥F > 2x} ≤ 4Pr∗

{
∥P◦∥F > 2x, κ22(P,F) ≤ 64t2

}
+ 4Pr∗

{
∥P◦∥F > 2x, κ22(P,F) > 64t2

}
.

Hence,

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ 4

(
Pr∗

{
∥P◦∥F > 2x, κ22(P,F) ≤ 64t2

}
+ Pr∗ {κ2(P,F) > 8t}

)
. (2.6)

By (2.4) in Lemma 2.2,

Pr∗U
{
∥P◦∥F > 2x, κ22(P,F) ≤ 64t2

}
≤ 2 exp

(
− nx2

128t2

)
N (x,L1(P),F) . (2.7)

Then (2.1) follows from combining (2.7) with (2.6) and using (2.5) in Lemma 2.3.

3 A crude use of Lemma 2.2

From Lemma 2.2, we can immediately derive a crude probability bound for ∥P − P∥F when F is

uniformly bounded, e.g. if supf∈F ,x∈X |f(x)| ≤ 1.

Lemma 3.1. Let F satisfy supf∈F ,x∈X |f(x)| ≤ 1. For t > 0,

Pr∗U {∥P◦∥F > t} ≤ min
{
1, 2 exp

(
−nt2/8

)
N (t/2,L1(P),F)

}
. (3.1)

Therefore,

Pr∗ {∥P◦∥F > t} ≤ E
[
min

{
1, 2 exp

(
−nt2/8

)
N (t/2,L1(P),F)

}]
. (3.2)
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Proof of Lemma 3.1. Note that (3.2) follows from (3.1). Furthermore, κ22(P,F) ≤ 1 since functions

in F are uniformly bounded in magnitude by 1. Thus (3.1) follows from (2.4) in Lemma 2.2.

We lose some generality by directly using the uniform sup norm bound. In particular, the bounds

(3.1) and (3.2) are far from tight if F has “small” second moments, i.e. if κ2(P,F) and κ2(P ,F) are

small. In contrast, Theorem 2.1 accounts for cases of “small” and “large” κ2 (P,F) and κ2
(
P ,F

)
.

4 Implications for VC classes

We will use the following result on covering numbers for Vapnik-C̆ervonenkis (VC) classes of func-

tions.

Lemma 4.1 (van der Vaart and Wellner (2023), Theorem 2.6.7, p. 206). Let F be a class of

functions with a positive envelope F with VC-dimension V (F) < ∞. There is a universal constant

K ∈ (0,∞) such that for any r ∈ [1,∞), any probability measure Q with ∥F∥Q,r > 0 and any

0 < ε < 1,

N (ε∥F∥Q,r,Lr(Q),F) ≤ K · V (F)(16e)V (F)

(
1

ε

)rV (F)

. (4.1)

Theorem 4.1. Let F be a VC class of functions with VC dimension V (F) < ∞ and x, t > 0

satisfying

sup
f∈F ,y∈X

|f(y)| ≤ 1, x ≥ 1√
8n

sup
f∈F

√√√√ 1

n

n∑
i=1

Var [f (Xi)] and t ≥ κ2
(
P ,F

)
.

Then for a universal constant K ∈ (0,∞) not depending on F , {Pi}ni=1 or n,

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ 16K · V (F)(16e)V (F)

[
exp

{
− nx2

128t2
+ V (F) log(1/x)

}
+ exp

{
−nt2 + 2V (F) log(1/t)

}]
.

(4.2)

Proof of Theorem 4.1. By (2.1) in Theorem 2.1,

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ 8 exp

(
− nx2

128t2

)
E [N (x,L1(P),F)]

+ 16 exp
(
−nt2

)
E [N (t,L2(P),F)] .
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By (4.1) in Lemma 4.1,

Pr∗
{∥∥P− P

∥∥
F > 8x

}
≤ 8KV (F)(16e)V (F) exp

(
− nx2

128t2
+ V (F) log(1/x)

)
+ 16KV (F)(16e)V (F) exp

(
−nt2 + 2V (F) log(1/t)

)
.

Now bound 8 by 16 to get (4.2).
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A Proofs of results in Section 2

A.1 Proof of Lemma 2.1

Define Zi(f) = (f (Xi)− E [f (Xi)]) /n. By Lemma B.3, the lower bound on y justifies the use

of β = 1/2 and α = y/2 in Lemma B.2; whence (2.3) follows from an application of (B.3) in

Lemma B.2.

A.2 Proof of Lemma 2.2

Treat X as fixed. The trivial upper bound of 1 follows from the fact that Pr∗U is an outer probability.

It will be useful to note the following: since Ui ∈ {−1, 1},

∀g ∈ F , |P◦g| =

∣∣∣∣∣ 1n
n∑

i=1

Uig (Xi)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|g (Xi)| = P|g|. (A.1)

Let N = N (t/2,L1(P),F) and select F∗ = {g1, . . . , gN} ⊆ F such that

defining g∗,f := argmin
g∈F∗

P |f − g| , we have sup
f∈F

P |f − g∗,f | ≤ t/2. (A.2)
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Combining (A.1) and (A.2),

∥P◦∥F = sup
f∈F

|P◦f | ≤ max
j=1,...,N

|P◦gj |+ sup
f∈F

P |f − g∗,f | ≤ max
j=1,...,N

|P◦gj |+ (t/2).

Thus 1 {∥P◦∥F > t} ≤ 1
{
maxj=1,...,N |P◦gj | > t

2

}
whence

Pr∗U {∥P◦∥F > t} ≤ PrU

{
max

j=1,...,N
|P◦gj | > t/2

}
≤ N max

j=1,...,N
PrU {|P◦gj | > t/2} .

By (C.1) in Lemma C.2, since Pg2j ≤ κ22(P,F), it follows that for each j = 1, . . . , N ,

PrU {|P◦gj | > t/2} ≤ 2 exp

(
− nt2

8 · Pg2j

)
≤ 2 exp

(
− nt2

8 · κ22(P,F)

)
.

Now (2.4) follows by combining the two previous displayed equations:

Pr∗U {∥P◦∥F > t} ≤ 2N exp

(
− nt2

8 · κ22(P,F)

)
.

A.3 Proof of Lemma 2.3

A.3.1 Setup and auxiliary results

In this proof, let W = (W1, . . . ,Wn) be an independent copy of X = (X1, . . . , Xn), and let

Q ≡ Qn :=
1

n

n∑
i=1

δ{Wi} and S ≡ Sn :=
1

2
(Pn +Qn) ≡

1

2
(P+Q) . (A.3)

We might expect that our previous symmetrization approach to be useful here. However the square

root in the definition of κ2 complicates symmetrization by Rademacher variables; thus a carefully

constructed alternative treatment of “symmetrization” is required. We proceed via a randomized

selection process: let T = (T1, . . . , Tn) be a vector of iid Bernoulli(1/2) variables satisfying T ⊥⊥
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(X,W), and define

ξi =TiXi + (1− Ti)Wi and ωi = TiWi + (1− Ti)Xi,

P′ =
1

n

n∑
i=1

δ{ξi} and Q′ =
1

n

n∑
i=1

δ{ωi}.
(A.4)

Notice that (P,Q) ∼ (P′,Q′) and that S ≡ 1
2 (P

′ +Q′).

Lemma A.1. For every t > 0 such that t ≥ κ2
(
P ,F

)
,

Pr∗

{
sup
f∈F

∣∣∣√P [f2]
∣∣∣ > 8t

}
≤ 4

3
Pr∗

{
sup
f∈F

∣∣∣√P′ [f2]−
√

Q′ [f2]
∣∣∣ > 6t

}
. (A.5)

Proof of Lemma A.1. See Section A.3.3.

Lemma A.2. Let f be a measurable real function such that supx∈X |f(x)| ≤ 1. For any t > 0,

PrT

{∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > t
}
≤ 2 exp

(
−nt2/2

)
. (A.6)

Proof of Lemma A.2. See Section A.3.4.

Lemma A.3. Let F satisfy supf∈F ,x∈X |f(x)| ≤ 1. For t > 0 such that t ≥ κ2
(
P ,F

)
,

Pr∗T

{
sup
f∈F

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > 6t

}
≤ min

{
1, 2N (t,L2(P),F) exp

(
−nt2

)}
+min

{
1, N (t,L2(Q),F) exp

(
−nt2

)}
,

(A.7)

and so,

Pr∗

{
sup
f∈F

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > 6t

}
≤ E

[
min

{
1, 3N (t,L2(P),F) exp

(
−nt2

)}]
. (A.8)

Proof of Lemma A.3. See Section A.3.5.

A.3.2 Proof of Lemma 2.3

(2.5) follows directly from combining (A.5) in Lemma A.1 with (A.8) in Lemma A.3.
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A.3.3 Proof of Lemma A.1

First, note that by P ∼ P′,

Pr∗

{
sup
f∈F

∣∣∣√P [f2]
∣∣∣ > 8t

}
= Pr∗

{
sup
f∈F

∣∣∣√P′ [f2]
∣∣∣ > 8t

}

Define Z1(f) =
√
P′ [f2] and Y1(f) =

√
Q′ [f2]. We will apply (B.1) in Lemma B.2 with m = 1,

y = 8t, α = 2t and β = 3/4. For t > 0,

sup
f∈F

Pr {|Y1(f)| > 2t} ≤ sup
f∈F

E
[
Y 2
1 (f)

]
4t

= sup
f∈F

E
[
Q′ [f2

]]
4t2

= sup
f∈F

P
[
f2
]

4t2
=

κ22
(
P ,F

)
4t2

.

Thus if additionally t ≥ κ2
(
P ,F

)
, it follows that supf∈F Pr {|Y1(f)| > 2t} ≤ 1/4, which is equiv-

alent to inff∈F Pr {|Y1(f)| ≤ 2t} ≥ 3/4 = β. Now, (A.5) follows directly from (B.1) in Lemma B.2

with m = 1, y = 8t, α = 2t and β = 3/4.

A.3.4 Proof of Lemma A.2

Note that ∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ = ∣∣P′ [f2
]
−Q′ [f2

]∣∣√
P′ [f2] +

√
Q′ [f2]

.

Furthermore,

(√
P′ [f2] +

√
Q′ [f2]

)2
= P′ [f2

]
+Q′ [f2

]
+ 2
√
P′ [f2]Q′ [f2] ≥ P′ [f2

]
+Q′ [f2

]
= 2S

[
f2
]
.

Combine the previous two displays:

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ ≤ ∣∣P′ [f2
]
−Q′ [f2

]∣∣√
2S [f2]

.

Then,

PrT

{∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > t
}
≤ PrT

{∣∣P′ [f2
]
−Q′ [f2

]∣∣ > t
√
2S [f2]

}

9



Now, we can express P′ [f2
]
− Q′ [f2

]
as a Rademacher symmetrization. Define Ui = 2Ti − 1, so

that Ui ∼ Rademacher. Then,

P′ [f2
]
−Q′ [f2

]
=

1

n

n∑
i=1

[
Tif

2 (Xi) + (1− Ti) f
2 (Wi)− Tif

2 (Wi)− (1− Ti) f
2 (Xi)

]
=

1

n

n∑
i=1

Ui

[
f2 (Xi)− f2 (Wi)

]
.

Combine these last two displays:

PrT

{∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > t
}
≤ PrT

{∣∣∣∣∣
n∑

i=1

Ui

[
f2 (Xi)− f2 (Wi)

]∣∣∣∣∣ > nt
√
2S [f2]

}
.

By Lemma C.2

PrT

{∣∣∣√P′ [f2]−
√

Q′ [f2]
∣∣∣ > t

}
≤ 2 exp

(
−

n2t2S
[
f2
]∑n

i=1 [f
2 (Xi)− f2 (Wi)]

2

)
.

Now (A.6) follows since

n∑
i=1

[
f2 (Xi)− f2 (Wi)

]2
=

n∑
i=1

[
f4 (Xi) + f4 (Wi)− 2f2 (Xi) f

2 (Wi)
]

≤
n∑

i=1

[
f4 (Xi) + f4 (Wi)

]
= 2nS

[
f4
]
≤ 2nS

[
f2
]
, by |f | ≤ 1.

A.3.5 Proof of Lemma A.3

Let M = N
(√

2t,L2(S),F
)

and select F∗ = {g1, . . . , gM} ⊆ F such that

defining g∗,f := argmin
g∈F∗

S
[
(f − g)2

]
, we have sup

f∈F

√
S
[
(f − g∗,f )

2
]
≤

√
2t. (A.9)

By the triangle inequality and (A.9), setting g = g∗,f for brevity of notation,

∣∣∣√P′ [f2]−
√

P′ [g2]
∣∣∣ ≤√P′ [(f − g)2] ≤

√
2S [(f − g)2] ≤ 2t.

10



Since the same bound holds for Q′,

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ ≤ ∣∣∣√P′ [f2]−
√
P′ [g2]

∣∣∣+ ∣∣∣√Q′ [f2]−
√
Q′ [g2]

∣∣∣+ ∣∣∣√P′ [g2]−
√
Q′ [g2]

∣∣∣
≤ 4t+

∣∣∣√P′ [g2]−
√
Q′ [g2]

∣∣∣ .
Therefore,

Pr∗T

{
sup
f∈F

∣∣∣√P′ [f2]−
√

Q′ [f2]
∣∣∣ > 6t

}
≤Pr∗T

{
sup
f∈F

∣∣∣∣∣
√

P′
[
g2∗,f

]
−
√

Q′
[
g2∗,f

]∣∣∣∣∣ > 2t

}

=Pr∗T

{
max

j=1,...,M

∣∣∣∣∣
√
P′
[
g2j

]
−
√

Q′
[
g2j

]∣∣∣∣∣ > 2t

}

≤M max
j=1,...,M

Pr∗T

{∣∣∣∣∣
√

P′
[
g2j

]
−
√

Q′
[
g2j

]∣∣∣∣∣ > 2t

}

By Lemma A.2,

Pr∗T

{
sup
f∈F

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > 6t

}
≤ min

{
1, 2N

(√
2t,L2(S),F

)
exp

(
−2nt2

)}
.

By Lemma C.6,

Pr∗T

{
sup
f∈F

∣∣∣√P′ [f2]−
√

Q′ [f2]
∣∣∣ > 6t

}
≤ min

{
1, 2N (t,L2(P),F)N (t,L2(Q),F) exp

(
−2nt2

)}
.

By Lemma C.7,

Pr∗T

{
sup
f∈F

∣∣∣√P′ [f2]−
√
Q′ [f2]

∣∣∣ > 6t

}
≤ min

{
1, 2N (t,L2(P),F) exp

(
−nt2

)}
+min

{
1, N (t,L2(Q),F) exp

(
−nt2

)}
.

This proves (A.7), and “integrating out X and W” by an application of (B.1) then proves (A.8).
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B Useful Symmetrization Results

Lemma B.1 (van der Vaart and Wellner (2023), Lemma 1.2.6, p. 10). Let X1 and X2 be random

elements on a common probability space. For any arbitrary real-valued map T ,

E∗ [T (X1, X2)] ≤ EX1,∗EX2,∗ [T (X1, X2)] ≤ E∗
X1

E∗
X2

[T (X1, X2)] ≤ E∗ [T (X1, X2)] .

Lemma B.2. Let Z = (Z1, . . . , Zm), Y = (Y1, . . . , Ym), and U = (U1, . . . , Um) be mutually in-

dependent random elements defined on a common probability space. Let µ1, . . . , µn : F → R be

arbitrary maps. Assume U takes values in {−1, 1}m, that the Zi’s are mutually independent real-

valued stochastic processes indexed by a set F and that Y is an independent copy of Z. For α > 0,

denote βm(α) = inff∈F Pr {|
∑m

i=1 Zi(f)| ≤ α}. For any y > α > 0, and any 0 ≤ β ≤ βm(α),

β · Pr∗
{∥∥∥∥∥

m∑
i=1

Zi

∥∥∥∥∥
F

> y

}
≤Pr∗

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
(B.1)

≤Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

> y − α

}
(B.2)

≤ 2Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − µi)

∥∥∥∥∥
F

>
y − α

2

}
. (B.3)

Proof of Lemma B.2. We start with the first inequality in (B.1). It suffices to prove this inequality

for β = βm(α). On
{
∥
∑m

i=1 Zi∥F > y
}
, we can select f̂(Z) such that

∣∣∣∑m
i=1 Zi

(
f̂(Z)

)∣∣∣ > y;

let f̂(·) be equal to an arbitrary member of F on
{
∥
∑m

i=1 Zi∥F ≤ y
}
. Under the hypothesis∣∣∣∑m

i=1 Yi

(
f̂(Z)

)∣∣∣ ≤ α,

∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

≥

∣∣∣∣∣
m∑
i=1

(
Zi

(
f̂(Z)

)
− Yi

(
f̂(Z)

))∣∣∣∣∣ ≥
∣∣∣∣∣
m∑
i=1

Zi

(
f̂(Z)

)∣∣∣∣∣−
∣∣∣∣∣
m∑
i=1

Yi

(
f̂(Z)

)∣∣∣∣∣
>y − α.

Therefore,

1

{∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥
F

> y

}
· 1

{∣∣∣∣∣
m∑
i=1

Yi

(
f̂(Z)

)∣∣∣∣∣ ≤ α

}
≤ 1

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
.
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Fix Z and take outer expectations with respect to Y

1

{∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥
F

> y

}
· Pr∗Y

{∣∣∣∣∣
m∑
i=1

Yi

(
f̂(Z)

)∣∣∣∣∣ ≤ α

}
≤ Pr∗Y

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
. (B.4)

Note that for fixed Z,

βm(α) ≤ PrY

{∣∣∣∣∣
m∑
i=1

Yi

(
f̂(Z)

)∣∣∣∣∣ ≤ α

}
= Pr∗Y

{∣∣∣∣∣
m∑
i=1

Yi

(
f̂(Z)

)∣∣∣∣∣ ≤ α

}
,

where the last equality follows since
∑m

i=1 Yi(f) is measurable for fixed f . Combine the last display

with (B.4):

βm(α) · 1

{∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥
F

> y

}
≤ Pr∗Y

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
.

Now the first inequality in (B.1) follows from integrating out Z and using Lemma B.1:

βm(α) · Pr∗Z

{∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥
F

> y

}
≤E∗

Z

[
Pr∗Y

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}]

≤Pr∗

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
.

For (B.2), first note that for each value of U,
∑m

i=1 Ui (Zi − Yi) and
∑m

i=1 (Zi − Yi) have the

same distribution since Z and Y are independent copies of each other, the Zi’s are all mutually

independent, and the Ui’s are all either −1 or 1. Thus for U held fixed, integrating out (Z,Y)

yields

Pr∗(Z,Y)

{∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

> y − α

}
= Pr∗

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
.

Hence, (B.2) follows from integrating out U in the above and using Lemma B.1:

Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

> y − α

}
≥EU

[
Pr∗(Z,Y)

{∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

> y − α

}]

=Pr∗

{∥∥∥∥∥
m∑
i=1

(Zi − Yi)

∥∥∥∥∥
F

> y − α

}
.
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For (B.3), by the triangle inequality

∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

≤

∥∥∥∥∥
m∑
i=1

Ui (Zi − µi)

∥∥∥∥∥
F

+

∥∥∥∥∥
m∑
i=1

Ui (Yi − µi)

∥∥∥∥∥
F

.

Now (B.3) follows from the union bound:

Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − Yi)

∥∥∥∥∥
F

> y − α

}
≤Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − µi)

∥∥∥∥∥
F

+

∥∥∥∥∥
m∑
i=1

Ui (Yi − µi)

∥∥∥∥∥
F

> y − α

}

≤Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − µi)

∥∥∥∥∥
F

>
y − α

2

}

+ Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Yi − µi)

∥∥∥∥∥
F

>
y − α

2

}

=2Pr∗

{∥∥∥∥∥
m∑
i=1

Ui (Zi − µi)

∥∥∥∥∥
F

>
y − α

2

}
.

Lemma B.3. Let the conditions in the premise of Lemma B.2 hold and in addition, assume that

Z1, . . . , Zn are independent mean zero and finite variance processes indexed by F . Let β ∈ (0, 1)

and y > α >
(
supf∈F

√∑m
i=1Var [Zi(f)]

)
/
√
1− β. Then (B.1), (B.2) and (B.3) all hold.

Proof of Lemma B.3. We are done if we show β ≤ βm(α) := inff∈F Pr {∥
∑m

i=1 Zi(f)| ≤ α} or

equivalently that 1 − βm(α) ≤ 1 − β. To that end, by α >
(
supf∈F

√∑m
i=1Var [Zi(f)]

)
/
√
1− β,

and Chebyshev’s inequality,

1− β >
supf∈F

∑m
i=1Var [Zi(f)]

α2
≥ sup

f∈F
Pr

{∥∥∥∥∥
m∑
i=1

Zi(f)

∣∣∣∣∣ > α

}

=1− inf
f∈F

Pr

{∥∥∥∥∥
m∑
i=1

Zi(f)

∣∣∣∣∣ ≤ α

}
= 1− βm(α).
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C Useful Miscellany

Lemma C.1 (Hoeffding’s Inequality). Let V1, . . . , Vn be independent random variables such that

ai ≤ Vi ≤ bi almost surely for some ai, bi ∈ R. For all t > 0,

Pr

(∣∣∣∣∣
n∑

i=1

(Vi − E [Vi])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1 (bi − ai)
2

)
.

Lemma C.2 (Hoeffding’s Inequality Special Case). Let U1, . . . , Un be independent mean zero ran-

dom variables all supported in [−1, 1]. For fixed non-stochastic numbers g1, . . . , gn and any t > 0,

Pr

{∣∣∣∣∣ 1n
n∑

i=1

Uigi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− n2t2

2
∑n

i=1 g
2
i

)
≤ 2 exp

(
− nt2

2maxi=1,...,n g2i

)
(C.1)

Proof of Lemmas C.1 and C.2. Various standard references have proofs of Hoeffding’s Inequality.

For example, the reader can look at Theorem 2 and its proof in Pollard (1984, Appendix B, pp.

191-192). We therefore focus on Lemma C.2. The second inequality in (C.1) is a straightforward

consequence of the first inequality in (C.1). The first inequality in (C.1) follows directly from

Hoeffding’s Inequality, i.e. Lemma C.1, by defining Vi = Uigi, ai = −gi and bi = gi and noting that

E [Vi] = 0 by E [Ui] = 0.

Lemma C.3. Let Q be a measure, A be a measurable set for which QA > 0. If Q [A ∩ {u ≤ 0}] = 0

(i.e. on A, u is positive Q-a.e.), then Q [u · 1A] > 0.

Proof of Lemma C.3. Suppose for contradiction that both Q [A ∩ {u ≤ 0}] = 0, and Q [u · 1A] ≤ 0.

By the hypothesis Q [A ∩ {u ≤ 0}] = 0, Q [u · 1A] = Q
[
u · 1A∩{u>0}

]
. By the latter condition,

Q [A ∩ {u > 0}] = 0. But then QA = Q [A ∩ {u ≤ 0}] +Q [A ∩ {u > 0}] = 0 + 0 = 0, which is the

desired contradiction

Lemma C.4. For measures Q1, Q2, let Q = Q1 + Q2 and hℓ = dQℓ/dQ. Furthermore, let A =

{h1 < 1/2 and h2 < 1/2}. Then QA = 0.

Proof of Lemma C.4. For the purpose of contradiction, suppose QA > 0. Then let uℓ = (1/2)−hℓ.

Clearly Q [A ∩ {uℓ ≤ 0}] = 0. By Lemma C.3, Q [uℓ · 1A] > 0 and so Q [hℓ · 1A] < 1
2QA. But

Q [hℓ · 1A] = QℓA by definition of hℓ. Combined, QℓA < 1
2QA for both ℓ = 1, 2. But this implies

QA = Q1A+Q2A < 1
2QA+ 1

2QA = QA, which is a contradiction.
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Lemma C.5. Let Q1, Q2 be measures, Q = Q1 + Q2, hℓ = dQℓ/dQ and Aℓ = {hℓ ≥ 1/2}. Let

f ∈ L2 (Q1) ∩ L2 (Q2) and for δ > 0, suppose φℓ ∈ L2 (Qℓ) satisfy Qℓ

[
|f − φℓ|2

]
≤ δ2. Define

g = φ1 · 1A1 + φ2 · (1− 1A1) · 1A2. Then Q
[
|f − g|2

]
≤ 4δ2.

Proof of Lemma C.5. Let A = Ac
1 ∩ Ac

2 = {h1 < 1/2 and h2 < 1/2}. By Lemma C.4, QA = 0.

Then f = f · 1A1 + f · (1− 1A1) · 1A2 + f · 1A and so

f − g = (f − φ1) · 1A1 + (f − φ2) · (1− 1A1) · 1A2 + f · 1A.

Note that (1− 1A1) · 1A2 = 1A2\A1
. Furthermore A1, A2 \ A1 and A form a measurable partition

of the underlying measurable space. Therefore,

|f − g|2 = |f − φ1|2 · 1A1 + |f − φ2|2 · (1− 1A1) · 1A2 + f2 · 1A.

Therefore by QA = 0,

Q
[
|f − g|2

]
= Q

[
|f − φ1|2 · 1A1

]
+Q

[
|f − φ2|2 · (1− 1A1) · 1A2

]
.

By definition of Aℓ, 1Aℓ
≤ 2hℓ · 1Aℓ

≤ 2hℓ (since hℓ ≥ 0 Q-a.e.). Since 0 ≤ 1− 1A1 ≤ 1 everywhere,

Q
[
|f − g|2

]
≤ 2

2∑
ℓ=1

Q
[
hℓ |f − φℓ|2

]
= 2

2∑
ℓ=1

Qℓ

[
|f − φℓ|2

]
≤ 4δ2.

Lemma C.6. Let Q1, Q2 be measures and F ⊆ L2 (Q1) ∩ L2 (Q2). For any δ > 0,

N
(√

2δ,L2 ((Q1 +Q2) /2) ,F
)
≤ N (δ,L2 (Q1) ,F) ·N (δ,L2 (Q2) ,F) .

Proof of Lemma C.6. Let Nℓ = N (δ,L2 (Qℓ) ,F) and let {φℓ,j}Nℓ
j=1 ⊆ F be a δ-cover for F in

L2 (Qℓ). Now follow Lemma C.5: define Q = Q1 + Q2, hℓ = dQℓ/dQ and Aℓ = {hℓ ≥ 1/2}.

Furthermore, define approximating functions gij = φ1,i ·1A1+φ2,j ·(1− 1A1)·1A2 . The set {gij}N1,N2

i,j=1

is of size N1 ·N2. Fix f ∈ F , and i, j such that Q1

[
|f − φ1,i|2

]
≤ δ2 and Q2

[
|f − φ2,j |2

]
≤ δ2. By
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Lemma C.5,

Q
[
|f − gij |2

]
≤ 4δ2, whence

(
Q1 +Q2

2

)[
|f − gij |2

]
≤ 2δ2

so that
{(

Q1 +Q2

2

)[
|f − gij |2

]}1/2

≤
√
2δ.

Hence, N
(√

2δ,L2 ((Q1 +Q2) /2) ,F
)
≤ N (δ,L2 (Q1) ,F) ·N (δ,L2 (Q2) ,F) as desired.

Lemma C.7. For x, y ≥ 0, min{1, x · y} ≤ min{1, x}+min{1, y}.

Proof of Lemma C.7. Break into three cases.

Case 1: x, y ≤ 1. Then min{1, x · y} = x · y ≤ x ≤ x+ y = min{1, x}+min{1, y}.

Case 2: x, y > 1. Then min{1, x · y} = 1 < 2 = min{1, x}+min{1 + y}.

Case 3: x ≤ 1 < y. Then min{1, x · y} ≤ 1 ≤ x+ 1 = min{1, x}+min{1, y}.
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